BOROUGH OF BARROW-IN-FURNESS

LICENSING REGULATORY COMMITTEE

Meeting, Thursday 4th February, 2016 at 2.00 p.m. (Drawing Room)

AGENDA

PART ONE

- 1. To note any items which the Chairman considers to be of an urgent nature.
- 2. To receive notice from Members who may wish to move any delegated matter non-delegated and which will be decided by a majority of Members present and voting at the meeting.
- 3. Admission of Public and Press

To consider whether the public and press should be excluded from the meeting during consideration of any of the items on the agenda.

4. Declarations of Interest.

To receive declarations by Members and/or co-optees of interests in respect of items on this Agenda.

Members are reminded that, in accordance with the revised Code of Conduct, they are required to declare any disclosable pecuniary interests or other registrable interests which have not already been declared in the Council's Register of Interests. (It is a criminal offence not to declare a disclosable pecuniary interest either in the Register or at the meeting).

Members may however, also decide, in the interests of clarity and transparency, to declare at this point in the meeting, any such disclosable pecuniary interests which they have already declared in the Register, as well as any other registrable or other interests.

- 5. Apologies for Absence/Attendance of Substitute Members.
- 6. To confirm the Minutes of the meeting held on 17th December, 2015 (copy attached).

FOR DECISION

(D) 7. Zoo Licensing Act 1981 (as amended) Zoo Licence for South Lakes Safari Zoo Ltd

Direction Order - Public Wooden Walkways and Platforms.

PART TWO

(D) 8. Application for a Hackney Carriage Drivers Licence.

NOT FOR PUBLICATION BY VIRTUE OF PARAGRAPH 2 OF PART ONE OF SCHEDULE 12A OF THE LOCAL GOVERNMENT ACT 1972 AND ACCESS TO INFORMATION (VARIATION) ORDER 2006

NOTE (D) - Delegated (R) - For Referral to Council

Membership of Committee

Callister (Chairman) Seward (Vice Chairman) Biggins Cassells Derbyshire Heath W. McClure Maddox Opie Proffitt Wall One Vacancy

For queries regarding this agenda, please contact:

Keely Fisher Democratic Services Officer Tel: 01229 876313 Email: ksfisher@barrowbc.gov.uk

Published: 27th January, 2016

BOROUGH OF BARROW-IN-FURNESS

LICENSING REGULATORY COMMITTEE

Meeting: Thursday 17th December, 2015 at 2.05 p.m. (Drawing Room)

PRESENT:- Councillors Callister (Chairman), Seward (Vice-Chairman), Biggins, Bleasdale, Derbyshire, Gill, Maddox, Opie and Wall.

Also Present:-

Barrow Borough Council

Anne Pearson (Environmental Health Manager) Graham Barker (Principal Environmental Protection and Licensing Officer) Richard Garnett (Principal Environmental Health Officer) Jennifer Curtis (Senior Licensing Officer) Jane Holden (Acting Principal Legal Officer) Sharron Rushton (Democratic Services Officer) Paula Westwood (Democratic Services Officer) Liam Casson (Trainee Environmental Health Officer).

<u>Others</u>

Paul O'Donnell (Local Authority Retained Solicitor) Matthew Brash (Retained Veterinary Consultant) Inspector Paul Telford (Cumbria Constabulary)

South Lakes Safari Zoo Ltd

Karen Brewer (Marketing and Development Manager) Ms Christina Fischer (Animal Manager) Mrs Frieda Rivera-Schreiber (Director of Veterinary Services) John McIntosh (Resource Manager)

35 – The Local Government Act, 1972 as amended by the Local Government (Access to Information) Act, 1985 and Access to Information (Variation) Order 2006

Discussion arising hereon it was

RESOLVED:- That under Section 100A(4) of the Local Government Act, 1972 the public and press be excluded from the meeting for the following item of business on the grounds that it involved the likely disclosure of exempt information as defined in Paragraph 2 (Minute No. 39) of Part One of Schedule 12A of the said Act.

36 – Apologies for Absence/Attendance of Substitute Members

Apologies for absence were received from Councillors Heath, W. McClure and Proffitt.

Councillor Gill had attended as a substitute for Councillor Heath for this meeting only.

37 – Minutes

The Minutes of the Licensing Regulatory Committee meeting held on 12th November, 2015 were taken as read and confirmed.

38 – Zoo Licensing Act 1981 (as amended) - Zoo Licence for South Lakes Safari Zoo Ltd – Non-Compliance with Conditions

Mr David Stanley Gill holds a zoo licence issued on 8th June, 2010 to operate a zoo at premises known as South Lakes Safari Zoo Ltd, Crossgates, Dalton-in-Furness, Cumbria, LA15 8JR.

On 28th and 29th January, 2014, a Special Inspection was carried out at The Zoo and the results of the inspection were brought to a special meeting of the Licensing Regulatory Committee on 23rd June, 2014 following which Members resolved on 1st July, 2014 to place 11 additional conditions on the zoo licence.

The Zoo had been subject to 3 Special Inspections (11th November, 2014, 26th February, 2015, and 23rd April, 2015) to assess compliance with a number of these conditions. The results of these inspections were reported to the Licensing Regulatory Committee on 13th August, 2015 and the Committee resolved to make alterations to the zoo licence.

Three of these alterations involved conditions:

- 20(a) Removal of the muck heap away from the moat in the African Field;
- 21 Survey of the wooden public walkways; and
- **23** Firearms protocol and training.

A Periodical Inspection of the zoo had now taken place (17th and 18th November, 2015) and this had revealed that the three above-mentioned conditions had not been complied with in relation to the deadlines set by the Committee. The three conditions and details of the non-compliance along with Officer recommendations were attached to the report for information.

The report had recommended that 3 Direction Orders be served on South Lakes Safari Zoo Ltd due to continued non-compliance with existing conditions on the Zoo Licence.

The 3 Direction Orders outlined in the Environmental Health Manager's report had been discussed in detail and each of the parties concerned had been given the opportunity to make representations and ask questions.

During the course of the meeting, at relevant points, all parties with the exception of the Committee Members, Paul O'Donnell (Solicitor), Jane Holden (Acting Principal Legal Officer), Sharron Rushton (Democratic Services Officer) and Paula Westwood (Democratic Services Officer) withdrew and were re-admitted to the meeting following the Committee's deliberations.

RESOLVED:-

(A) Condition 20(a) – To agree that the Committee elevate Condition 20(a) to a Direction Order with a compliance deadline of 28 days. The Zoo must inform the Council, in writing, when the works are completed;

In accordance with Section 15.6 of the Council's Constitution, Councillor Biggins requested his vote against the decision be recorded.

- (B) Condition 21 To agree that the Committee elevate Condition 21 to a Direction Order with a compliance deadline of 28 days and that the Direction Order required all wooden walkways and wooden platforms to be closed to the public until the Direction Order was lifted;
- (C) Condition 23 To agree that no further action be taken, that the deadline be extended to 1st April 2016 and a progress report be taken back to Committee at this time.

39 – Renewal Application for a Hackney Carriage Drivers Licence

The Senior Licensing Officer reported on a renewal application she had received for a Hackney Carriage Drivers Licence. She submitted information which had been drawn to her attention concerning the applicant and set out details of the Committee's policy regarding such matters.

The applicant attended the meeting to address the Committee.

RESOLVED:- To agree to refuse the application.

40 – Withdrawn Item

The following item had been withdrawn from the Agenda:-

Zoo Licence Act 1981 (as amended) - Zoo Licence for South Lakes Safari Zoo Ltd – Application to Transfer Zoo Licence.

The meeting closed at 4.20 p.m.

LICENSING REGULATORY COMMITTEE

Date of Meeting: 4th February, 2016

<u>Part One</u> (D) Agenda Item 7

Reporting Officer: Principal Environmental Health Officer (Commercial)

Title:Zoo Licensing Act 1981 (as amended)Zoo Licence for South Lakes Safari Zoo Ltd

Direction Order - Public Wooden Walkways and Platforms

Summary & Purpose of the Report

Mr David Stanley Gill holds a Zoo licence issued on 8th June 2010 to operate a Zoo at premises known as South Lakes Safari Zoo Ltd, Crossgates, Dalton-in-Furness, Cumbria, LA15 8JR.

On 13th August 2015, the Licensing Regulatory Committee considered a report outlining the results of a number of special inspections undertaken since November 2014. The existing condition relating to walkways was amended requiring a report on the design and construction of the wooden walkways/platforms to be produced by 13th November addressing 6 specific issues.

A periodical/renewal inspection took place at the Zoo on 17th and 18th November 2015. On the 17th December 2015 it was reported to Members that the report had not met the requirements of the condition. Members resolved to elevate the condition to a Direction Order requiring compliance within 28 days and that all wooden walkways/platforms be closed to the public until the Direction Order was revoked.

Members should note that the closure only became necessary after the effective date of the direction order (19th January 2016) and this is also the date when the 28 days for compliance starts in relation to the report.

On 19th January 2016 the Zoo submitted an incomplete report as it did not cover all the wooden walkways/platforms. The Zoo also informed the Council that 5 of the 7 wooden walkways/platforms originally in existence were to be taken down or remodeled.

On 20th January 2016, Council Officers visited the Zoo and noted that all wooden walkways/platforms were closed.

Background

Mr David Stanley Gill holds a Zoo licence issued on 8th June 2010 to operate a Zoo at premises known as South Lakes Safari Zoo Ltd, Crossgates, Dalton-in-Furness, Cumbria, LA15 8JR [the Zoo].

A number of public wooden walkways/platforms have been built at the Zoo and these have been a cause of concern over the duration of the Zoo licence. The previous history has been reported to past Committees but in brief concerns were raised during formal inspections in 2009 and 2013. The history since 2014 is as follows:-

In January 2014, a Special Inspection was carried out at The Zoo and the results brought to the Licensing Regulatory Committee in June 2014 following which Members resolved to place 11 additional conditions on the Zoo licence. One of these conditions was in respect of the wooden walkways.

The Zoo has been subject to 3 Special Inspections on 11th November 2014, 26th February 2015, and 23rd April 2015. The results of these inspections were reported to Committee on 13th August 2015 and the Committee resolved to alter a condition on the licence which related to the public wooden walkways and platforms and a compliance deadline of 13th November 2015 was set.

A periodical/renewal inspection took place on 17th/18th November 2015 during which the Zoo admitted to inspectors that they had missed the compliance deadline adding that they had not yet instructed a contractor to undertake the report.

The non-compliance with this condition was brought before Members at the Licensing Regulatory Committee meeting on 17th December 2015. Members decided to escalate the condition to a Direction Order. The Direction Order imposed by Members had an effective date of 19th January 2016; this is when the wooden walkways/platforms were required to be closed. Members decided the report on the walkways should be completed within 28 days. The 28 days started after the effective date which gives a final compliance deadline for the report to be submitted of 16th February 2016.

The Direction Order

Condition 21 which was elevated to a direction order states the following:-

Condition 21 In accordance with 8.13 and 8.18 of the SSSMZP, the public wooden walkways and platforms must be designed to meet BS 6399-1: 1996 and be able to cope with the heavy duty loading and maintained in safe condition. The effect of any walkway or platform stanchions being submerged in water for prolonged periods should be assessed in terms of deterioration and structural stability. A programme of inspection, maintenance and structural repairs needs to be documented.

A report must be produced for the Licensing Authority by 13th November, 2015 and presented to this Committee.

To satisfy the condition;

- The Zoo must produce design calculations that demonstrate that all timber walkways and platforms are designed to carry the loads specified in Clause 10 and Table 4 of BS 6399-1:1996 with the structures considered to be carrying 'heavy duty' loading.
- Design calculations must be produced to confirm that 'stability-critical' longitudinal and lateral sway stiffness of the structures is confirmed for at least 10% of the 5kNm⁻² vertical loading in the appropriate combinations with lateral loading on the parapets and the timber post supports.
- 3. The Zoo must demonstrate through design and calculations that the design incorporates protection against any accidental (impact) loading on the timber posts.
- 4. The Zoo must demonstrate through design and calculations that the design incorporates a suitable assessment for any disproportionate collapse (i.e. structural integrity under failure of one or possibly more timber posts)
- 5. That the Zoo provides an independent structural engineers report on the condition of the timber walkways and platforms within the Zoo and carry out any works that will meet the design standard and specifications above.
- 6. That the Zoo implements a regular recorded assessment, inspection, and maintenance regime.

Guidance

For Members' information the relevant sections of the Secretary of State's Standards of Modern Zoo Practice (SSMZP) are reproduced below:-

- paragraph 8.13 Buildings and structures to which the public have access must be maintained in a safe condition.
- paragraph 8.18 Where a walkway passes over an animal enclosure it should be designed, constructed, and maintained to ensure that it is safe.

Officer Comments

It is fundamental to public safety that the elevated walkways, viewing platforms, and other similar structures have been designed to the correct standard, but are also subject to the correct level of inspection and preventative maintenance. A failure of a walkway or a platform would cause members of the public to fall from height and may place them in close proximity to dangerous animals that may then hamper rescue operations.

At the Committee meeting on 17th December 2016, Ms Karen Brewer, representing the Zoo, stated that the report on the wooden walkways/platforms should be complete by the end of the following week [25th December] but early in January the Council had not received the report. An email was sent on the 8th January 2016 requesting an update.

On 19th January a further email was sent to the Zoo by which stated:

"As you are aware the Direction Order dated 18th December 2015 in respect of the timber walkways at the Safari Zoo is now effective. This means that from today (19th January 2016)all the timber walkways must be closed until such time as the Council is in receipt of the required report <u>AND</u> the Direction Order is revoked by the Council. I will inspect the Zoo at 10am on 20th January to ensure that this has been achieved.

I must inform you that the report must cover all the timber walkways as they existed when the Condition was attached to your licence dated 11th September 2015."

Approximately an hour later a report was emailed by Ms. Brewer. The report was written by RG Parkins and Partners Ltd dated 18th January 2016 and given reference K32719/AR a copy of this report is attached at **Appendix A**.

At **para 2.2 [page 2]** of the report it states that the original scope of this report was to include the structural appraisal of the following walkways & viewing platforms:

- a) Tiger/aerial walkway.
- b) Snow leopard/Wolf access ramp & viewing platform.
- c) Giraffe viewing platform.
- d) Anteater viewing platform.
- e) Lemur walkway.
- f) Bear/Worldwide Safari walkway.
- g) Restaurant balcony.

It adds that "during the process of assessing the above walkways, extensive investigation works had to be undertaken. During this time the scope of this report was reduced with five of the seven timber structures omitted, however reference to them still appears in some of the supporting document.

The appraisal included in this report therefore focuses only on the following structures:

Snow Leopard/Wolf access ramp only (viewing platform to be closed).
 Bear/Worldwide Safari walkway."

At **para 3.1 [page 3]** the report refers to a strength grading report to be provided by CATG Ltd. That report is not included in the main report but Parkins summarise it by stating:-

- A significant number of the timber components used could not be stress graded and are therefore unsuitable for use in a structural capacity.
- The timbers that are suitable for use in a structural capacity are of the lowest structural strength grade used in the UK (except on the Snow Leopard/Wolf access ramp, which were slightly higher).

On 21st December 2015 Parkins dug 20 trial pits to assess the state of the timbers and foundations. **Para 3.2 [page 3]** of the reports summarises the findings as follows:-

- It was evident that water ponding and ingress had led to a decay of the timber posts at the interface between the concrete and timber.
- The concrete encasement was not of a size that could be defined as a structural foundation, but was purely acting as a barrier to prevent decay of the timber.

Para 3.3 [page 4] of the report provides a structural appraisal for the Snow Leopard access ramp and Bear walkway. It states that the findings of the two structures were common across all seven of the structures. Those findings being:

- The existing timber joists and existing decking boards are overstressed.
- The timber bearers supporting the joists are overstressed and inadequately fixed to the columns.
- No longitudinal bracing is present
- The existing handrails are not adequate.

As the report covered only two of the seven wooden walkways/platforms, Officers advised the Zoo that the Direction Order had not been complied with and that the Zoo would be visited on the morning of 20th January to ensure that all the wooden walkways/platforms were closed.

The results of that visit are summarised below:

- a) Tiger/aerial walkway the walkway has been removed. The framework remains as it is being covered to form a roof for the path below. In forming the roof several posts adjacent to the main walkway will be removed in order to negate the vehicle impact risk identified at point (3) of the Direction Order
- b) (i) Snow leopard/Wolf access ramp This area is currently closed. The walkway will be the second project after (f) (which is detailed below) that will

undergo works according to drawing K32719/A3/SK2 of the report. This is the access ramp to the snow leopard and wolf enclosure. The works will not impact on the structural integrity of any other structure

(ii) Snow Leopard/Wolf Viewing Platform - the viewing platform itself will remain closed. It is due to be dismantled as the Zoo wish to remodel the viewing experience.

- c) Giraffe viewing platform the platform remains intact with a barrier across the entrance to prevent public access. The intention is to remove this platform entirely and create more space for the feeding experience and negate a pinch point in the walkways.
- d) Anteater viewing platform the platform remains intact with a barrier across the entrance to prevent public access. The intention is to remove this platform but possibly leave the frame and transform it into a covered picnic area
- e) Lemur walkway only the framework remains as all the walk boards have been removed. This framework is due to be removed and the area remodelled.
- f) Bear/Worldwide Safari walkways This walkway is closed. The works have started to introduce the strengthening as detailed in the report. The additional bearers have been installed but there is work needed to install the cross bracing and the extra joists. This is drawing K32719/A3/SK1 A of the report. The Worldwide Safari is an isolated walkway so works to it do not affect any other structure.
- g) Restaurant balcony this area remains with a temporary barrier to prevent public access as is typical for the winter months when the Zoo does not use the area. The Zoo have expressed their desire to replace the platform with a new structure ready for Spring 2016 but could not provide further details.

For Members' information an email of 19th January 2016 from Mr. David Gill states when and why the decision was made to remove some of the wooden walkways/platforms:

"I can tell you that before any report was received I had already made a long term business decision to remove all the walkways except 2. This decision was based on the assumption of the inevitable aging of all of the walkways and the potential need for constant maintenance and eventual replacement of individual wood elements as need arose. The economic argument based on the fact we have no funds available to re build the walkways in steel in the short or long term led me to a purely long term financial decision that required a removal of ALL walkways and platforms with immediate effect from your direction Order.

However as we had just opened one walkway in July and the wolf one was essential for viewing I decided to take a proactive approach and have these fully appraised and take whatever remedial action is needed to retain them for the long term.

All the walkways and platforms except the two mentioned above have been closed for a while now and most are already demolished."

(Please see Appendix B for complete email from Mr Gill)

As a result of plans to demolish/remodel a number of the wooden walkways/platforms, the following recommendations are being put before Members for consideration:

Recommendation 1

The Zoo be required to confirm that the public wooden walkways/platforms (b)(i) and (f) as stated above, comply with the six points in the direction order. Therefore an addendum to the current Parkins' report is required to confirm the remedial works stated in the report have been undertaken to the required standard.

Reason for the Recommendation

The report produced by Parkins informs that the structures to be retained require remedial works and provides drawings of how the structures can be brought up to the required standard. The Direction Order requires that the report **confirms** that the structures meet the required standard specified in points 1 to 6 of the direction order.

Therefore confirmation that the recommended remedial works have been carried is required in the report.

Options

The options available to Members are:-

- Accept the officer recommendation that an addendum to the report is required in order to comply with the Direction Order.
- **Reject** the officer recommendation and deem the Zoo capable of completing the works as directed without external certification.

Recommendation 2:

In relation to the wooden walkways/platforms listed as (a),(b)(ii),(c),(d),(e), and (g) if any framework of the walkways/platforms are to remain in place a report is required to certify that they are suitable for such use and the points to be addressed are 3, 4, 5 and 6 of the Direction Order.

Reason for Recommendation

A report is still required to inform Members as to the suitability of parts of the wooden walkways/platforms to remain in place given information in the current report concerning timbers starting to decay at ground level (section 3.2) and accidental impact loads from vehicles on site (section 3.5). This information is required before the direction order can be lifted on the walkways /platforms stated above.

Options

The options available to Members are:-

- Accept the officer recommendation that a report detailing that any remaining structures remaining are safe.
- Reject the officer recommendation and decide that no further report is required on the wooden walkways/platforms listed as (a), (b)(ii),(c),(d),(e), and (g) above.

Recommendation 3

That the compliance deadline for the reports detail in Recommendation 1 and 2 (currently 16th February 2016) be extended by agreement with the Zoo to allow for remedial works and subsequent reports to be completed.

Reason for Recommendation

To allow the Zoo adequate time to complete the works

Options

The options available to Members are:-

- Accept the Officer recommendation and allow the Zoo the opportunity to extend the time limit.
- Reject the Officer recommendation and require all reports to be complete by 16th February 2016

Recommendation 4

The Environmental Health Manager be given delegated authority to revoke the direction order once the points specified in it have been complied with.

Reason for Recommendation

The Zoo is a commercial undertaking and having walkways out of action is a concern for them as the spring season draws closer. To aid the Zoo in ensuring that the walkways are opened with the minimal delay it is reasonable that individual walkways be opened upon application by the Zoo, after providing sufficient evidence that the terms of the Direction Order have been met.

Options

The options available to Members are:-

- Accept the officer recommendation that the Environmental Health Manager be given delegated the authority to lift the Direction Order in response to the necessary evidence being provided by the Zoo.
- **Reject** the officer recommendation and retain the Committee's right to decide on the compliance of this Direction Order.

Recommendation 5

That all wooden walkways/platforms remain closed until the Direction Order is revoked.

Reason for Recommendation

This will ensure that the public do not have access to walkways until the relevant points in the direction order are addressed.

Options

The options available to Members are:-

- Accept the officer recommendation that the walkways/platforms remain closed until the work has been completed.
- **Reject** the officer recommendation and allow the Zoo to reopen the walkways as and when they consider them to be safe.

Considerations

(i) <u>Legal Implications</u>

The Zoo requires a licence to be able to open to the public and the Zoo Licensing Act 1981 makes the local authority responsible for administering the Licence. Anyone running a Zoo without a licence is guilty of an offence.

The Local Authority's power to alter a licence is contained within Section 16 of the same Act

(1) At any time after the grant of a licence under this Act, it may be altered by the local authority if in their opinion it is necessary or desirable to do so for ensuring the proper conduct of the Zoo during the period of the licence (whether their opinion arises from an inspectors' report or an alteration of standards specified under section 9 or otherwise).

Section 18(9) states

A direction to which this subsection applies shall not have effect-

(a) during the period within which the holder is entitled to appeal against it;

Subsection (9) applies to the following directions—

- (a) a direction under section 16A(2)(d) which requires the Zoo or a section of it to be closed to the public;
- (b) a direction under section 13(8)(c), 16A(2) or 16E(6) which imposes a requirement on the operator of the Zoo to carry out works he would not otherwise be required to carry out; and

There is a right of appeal under Section 18 to the Magistrate's Court if the holder of the licence wishes to challenge the decisions of the Committee.

The Council have the power to prosecute for a failure to meet a licence condition under Section 19 of the Act

(ii) <u>Risk Assessment</u>

Not Applicable

(iii) Financial Implications

The Council may be subject to an appeal against the Committee's decision in the Magistrates' Court under Section 18 of the Zoo Licensing Act 1981.

(iv) Key Priorities or Corporate Aims

None identified

(v) Equality and Diversity

Not Applicable.

(vi) Other Human Rights

All licence holders have a right to a fair hearing. Any action taken by the Council must be taken having regard to the principle of proportionality. When determining what action is appropriate the Committee will balance the rights of the licence holder with the rights of the public at large.

(vii) Health and Well-being Implications

One of the purposes of the Zoo Licensing Act 1981 is to protect the safety of the public visiting premises licensed under the Act.

Background Papers

Zoo Licence held by South Lakes Safari Zoo Ltd LRC 17th December 2015 Committee Report Table of Decision from LRC 17th December 2015

R. G. PARKINS & PARTNERS LTD

STRUCTURAL APPRAISAL OF TIMBER WALKWAYS

AT

SOUTH LAKES SAFARI ZOO, DALTON-IN-FURNESS

Our ref: K32719/AR

18 January 2016

Structural Appraisal Of Timber Walkways at South Lakes Safari Zoo, Dalton-In-Furness

Version	Amendment	Date
1		

Notice

This report is for the sole use of South Lakes Safari Zoo. R G Parkins & Partners Ltd will not be held responsible for any actions taken or decisions made by any third party as a result of this report.

Meadowside Shap Road Kendal Cumbria LA9 6NY Tel: (01539) 729393 Fax: (01539) 740609 Email: mail@rgparkins.com

Also at: 97 King Street Lancaster LA1 1RH Tel: (01524) 32548 Fax: (01524) 843989

Directors :-

A J Bain MSc CEng MICE IMaPS K Lockwood BEng CEng MICE D Heron BSc CEng MICE MCIHT IMaPS R J Burrow BSc CEng MICE MCIHT IMaPS

Associate Directors :-

J R Parkins Dip Eng HNC T Melhuish MEng PhD CEng MICE A Roberts BEng (Hons) C J Scott IEng ACIWEM

Registered Office: Meadowside Shap Road Kendal Cumbria LA9 6NY Reg No: 4107150

www.rgparkins.com

1.0 BRIEF

RG Parkins & Partners Ltd were appointed by South Lakes Safari Zoo to carry out a structural appraisal of the existing timber walkways and to provide a set of structural calculations to satisfy the requirements of Barrow Borough Council.

The requirements set out by Barrow Borough Council were communicated via a letter, dated 10th November 2015, sent from Barrow Borough Council (Environmental Health) to South Lakes Safari Zoo (Appendix A).

2.0 INTRODUCTION

2.1 <u>History</u>

South Lakes Safari Zoo have previously appointed Bleasdale Wand Ltd to appraise the structural suitability of the walkways. The assessments carried out by Bleasdale Wand Ltd will not be commented on in this report, however the loading requirements adopted by Bleasdale Wand Ltd at the time, do not meet the loading requirements set out by Barrow Borough Council.

2.2 <u>The Walkways</u>

The original scope of this report was to include the structural appraisal of the following walkways & viewing platforms:

- a) Tiger/aerial walkway
- b) Snow leopard/Wolf access ramp & viewing platform.
- c) Giraffe viewing platform
- d) Anteater viewing platform
- e) Lemur walkway
- f) Bear/Worldwide Safari walkway
- g) Restaurant balcony

During the process of assessing the above walkways, extensive investigation works had to be undertaken. During this time the scope of this report was reduced with five of the seven timber structures omitted, however reference to them still appears in some of the supporting document.

The appraisal included in this report focuses only on the following structures:

- 1) Snow Leopard/Wolf access ramp only (viewing platform to be closed).
- 2) Bear/Worldwide Safari walkway.

3.0 OBSERVATIONS

3.1 <u>Timber</u>

RG Parkins & Partners Ltd carried out an initial site inspection on 9th December 2015 to record the structural dimensions of the walkways. During this inspection it became evident that the timber used in the walkways was not marked with a structural strength class (to BS EN 338: Structural Timber).

In order for timber to be used for a structural purpose, it must be able to achieve a structural strength class.

Therefore, RG Parkins & Partners Ltd arranged for Certification and Timber Grading (CATG) Ltd to undertake the visual strength grading of the in-situ timbers, the findings of which can be found in CATG Ltd's report (Appendix B), but are summarised as follows:

- A significant number of the timber components used could not be stress graded and are therefore unsuitable for use in a structural capacity.
- The timbers that are suitable for use in a structural capacity, are of the lowest structural strength grade used in the UK (except on the Snow Leopard/Wolf access ramp, which were slightly higher).

3.2 <u>Foundations</u>

It had been suggested that the existing timber columns supporting the structures were installed 1m into the ground and encased in concrete. In order to prove this claim, RG Parkins & Partners Ltd attended site on 21st December 2015 to inspect approximately 20 trial pits that had been dug adjacent to the columns. The summary of findings from these trial pits are as follows:

- The timber posts were, as suggested, encased in concrete below ground level.
- It was evident that water ponding and ingress had led to a decay of the timber posts at the interface between the concrete and timber.
- The concrete encasement was not of a size that could be defined as a structural foundation, but was purely acting as a barrier to prevent decay of the timber.

From the observations made, it was determined that during the structural analysis of the walkways, the post bases should be considered as nominally pinned, although in the locations where decay has set in, remedial works would need to be carried out.

3.3 <u>Structural Appraisal</u>

As previously noted this appraisal will focus solely on the Snow Leopard/Wolf access ramp and the Bear/Worldwide Safari walkway, however it should be noted that preliminary design calculations were carried out on all seven of the aforementioned walkways. The findings of the two structures focused on herewith were common across all seven of the structures.

The preliminary calculations originally carried out have been amended to suit the structural timber grading noted in CATG Ltd's report. The revised calculations (Appendix C) indicate a number of flaws in the structures, which need to be addressed in order for the remaining two walkways to meet the structural requirements set out by Barrow Borough Council.

The remedial works required have been indicated on drawing for ease of reference (Appendix D), but are summarised here for completeness:

- The existing timber joists and existing decking boards are overstressed. The addition of supplementary joists in between each of the existing joists, will half the span of the decking boards and half the load on the existing joists, permitting them to meet the loading criteria.
- The timber bearers supporting the joists are overstressed and inadequately fixed to the columns. An additional timber bearer beneath the existing, with a revised bolting arrangement is required.
- No longitudinal bracing is present and needs adding to provide structural stability as well as due resilience to disproportionate collapse.
- The existing handrails are not adequate for resisting the appropriate horizontal loading and need supplementary rails adding.

3.4 <u>Handrails</u>

It is a UK Building Regulations requirement that no openings in balustrading should allow a 100mm sphere to pass through. From the observations made on site, it is evident that this regulation is not being met, although it is noted that these external timber structures do not necessarily fall within the UK Building Regulation requirements.

3.5 Impact Loading

One of the requirements set out by Barrow Borough Council is for an allowance in the structures to resist an accidental impact load from the vehicles used on site. An assessment of this potential accidental load gives a design load value of approximately 150kN that, by inspection, the timber walkways will not be able to resist.

4.0 CONCLUSIONS

In order for the two timber structures that are to remain, to meet the requirements of Barrow Borough Council, the remedial works as indicated on the drawings in Appendix D need to be carried out.

RG Parkins & Partners Ltd would recommend that Barrow Borough Council are consulted on the requirements for all handrail detailing and any supplementary works are carried out at the same time as the remedial works noted.

The risk of impact loading needs to be removed. This can either be done by way of a site management plan, or by way of using secondary barriers in front of the existing walkways/platforms.

5.0 DISCLAIMER

5.1 Copyright of this report remains the property of R G Parkins & Partners Ltd.

Adam Roberts R G Parkins & Partners Ltd

18 January 2016

APPENDIX A

DESIGN REQUIREMENTS BARROW BOROUGH COUNCIL LETTER

174

-**i**i

Regeneration & Built Environment Directorate Environmental Health

TOWN HALL DUKE STREET BARROW-IN-FURNESS CUMBRIA LA14 2LD Tel: (01229) 876543 DX NO: DX63917 BARROW-IN-FURNESS

Email: customerservices@barrowbc.gov.uk

Our Ref: Your Ref:

Contact Name: Direct Line:

Richard Garnett 01229

Date: 10 November 2015

Dear Mr Gill

ર્કે છે. જે

Zoo Licencing Act 1981 The Safari Zoo Licence Condition 21 – Timber Walkways

South Lakes Safari Zoo Ltd

Broughton Road Dalton in Furness

LA15 8JR

At the Licencing Regulatory Committee held in August 2015 the Committee received a report on the compliance with Condition 21 which relates to the timber walkways used throughout the Zoo.

In July 2014 the following condition was adopted: In accordance with 8.13, 8.15, 8.18 of SSSMZP, public walkways must be maintained in safe condition. Measures must be taken to reduce likelihood of slipping on all wooden surfaces. Where the operator has deemed weather conditions have caused slipping risks, the walkways must be closed with a physical barrier. The effect of walkway and platform stations being submerged in water for prolonged periods should be assessed for deterioration and structural stability and a maintenance programme of structural repairs needs to be documented.

For the Zoo Bleasdale Wand Ltd compiled a structural report which confirmed that the structure was consistent with British Standard BS6399 Part 1 (1984) with a design loading of 4kNm⁻². The Council referred this report to an independent structural engineer R.G. Parkins and Partners Ltd who stated that the British Standard BS6399 Part 1 (1996) should have been utilised with a stated design loading of at least (general duty walkway) 5kNm⁻² or even (heavy duty walkway) 7.5kNm⁻².

Having considered the report the Committee agreed that current Condition 21 be replaced by the following Licence Condition with revised wording

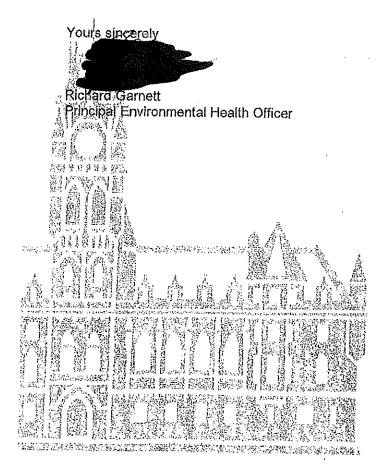
In accordance with 8 13 and 8 18 of the SSSMZP, the public wooden walkways and platforms must be designed to meet BS 6399-1: 1996 and be able to cope with the heavy duly loading and maintained in safe conditions The effect of any walkway or platform stanchions being submerged in water for prolonged periods should be assessed in terms of deterioration and structural stability. A programme of Inspection, maintenance and structural repairs needs to be documented.

A report must be produced for the Licensing Authority by 13th November, 2015 and presented to this Committee, addressing the following six issues:-

1) The Zoo must produce design calculations that demonstrate that all timber walkways and platforms are designed to carry the loads specified in Clause 10 and Table 4 of BS 6399-1: 1996 with structures considered to be carrying 'heavy duty' loading;

2) Design calculations must be produced to confirm that 'stability critical' longitudinal and lateral sway stiffness of the structures is confirmed for at least 10% of the 5kNm⁻² vertical loading in the appropriate combinations with lateral loading on the parapets and the timber post supports;

3) The Zoo must demonstrate through design and calculations that the design incorporates protection against any accidental (impact) loading on the timber posts;


4) The Zoo must demonstrate through design and calculations that the design incorporates a suitable assessment for any disproportionate collapse (i.e. structural integrity under failure of one or possibly more timber posts);

5) That the Zoo provides an independent Structural Engineer's report on the condition of the timber walkways and platforms within the Zoo and carry out any works that will meet the design standard and specifications above; and

6) That the Zoo implements a regular recorded assessment, inspection and maintenance regime."

The Committee added that they would need to determine what remedial works were high, medium and low risk/priority.

Can you please ensure that the report is submitted as requested as I would like to be able to report to the Committee on 17th December. If there are any issues then please contact me.

APPENDIX B

SITE INSPECTION REPORT CERTIFICATION AND TIMBER GRADING (CATG) LTD TIMBER GRADING

Insert CATG Ltd final report here, when available (estimated to be 19/01/15).

APPENDIX C

CALCULATIONS RG PARKINS & PARTNERS LTD STRUCTURAL APPRAISAL

,

R G PARKINS & PARTNERS LTD CONSULTING CIVIL & STRUCTURAL ENGINEERS	CALCULATIONS		
Meadowside Shap Road Kendal LA9 6NY Tel: (01539) 729393 Fax: (01539) 740609		JOB NUMBER	K32719
97 King Street Lancaster LA1 1RH Tel: (01524) 32548 Fax: (01524) 843998		DATE	18/01/16
		DESIGNED	SR

RELEVANT INFORMATION

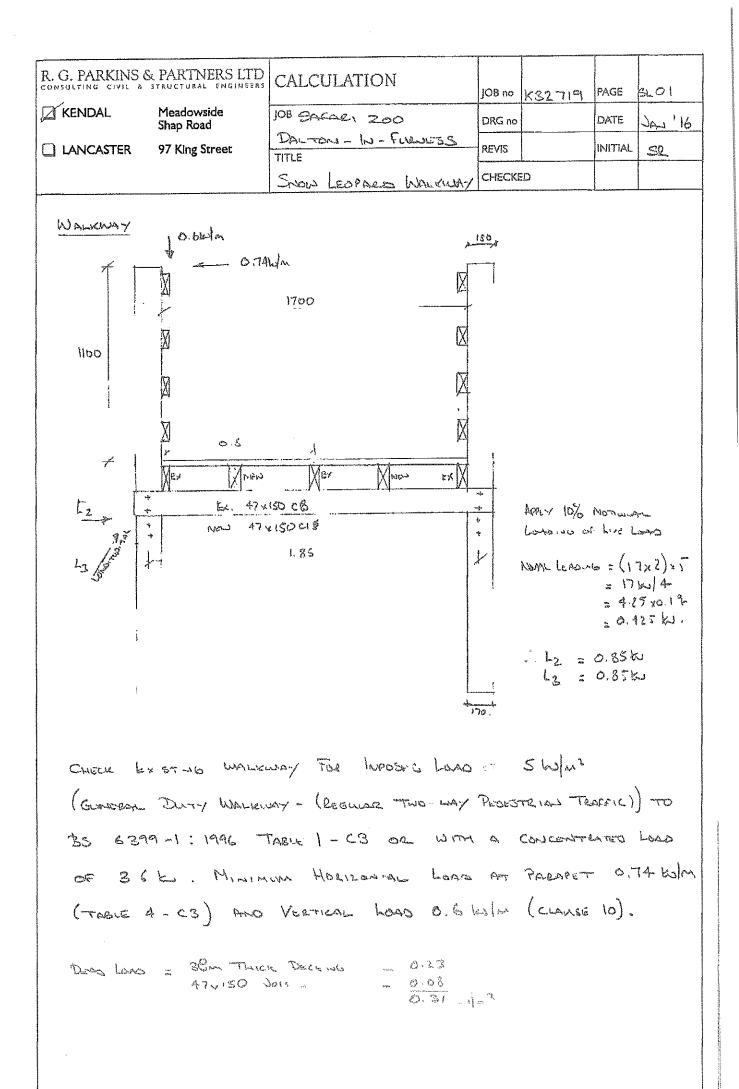
R G Parkins & Partners Ltd – Calculations K32719-SL01 to SL15 and drawing K32719/A3/SK02 Carnivore Country Snow Leopard walkway Strengthening Sections and Details.

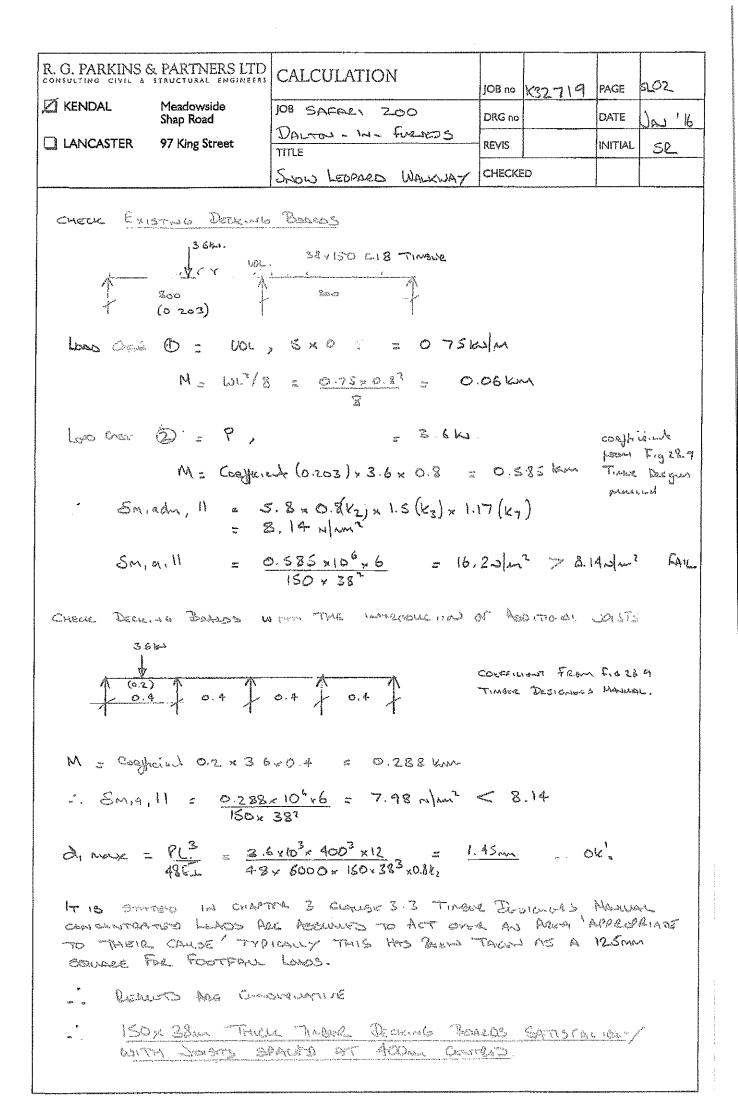
Architects - None

Others - None

SNOW LEOPARD WALKWAY

SAFARI ZOO DALTON IN FURNESS

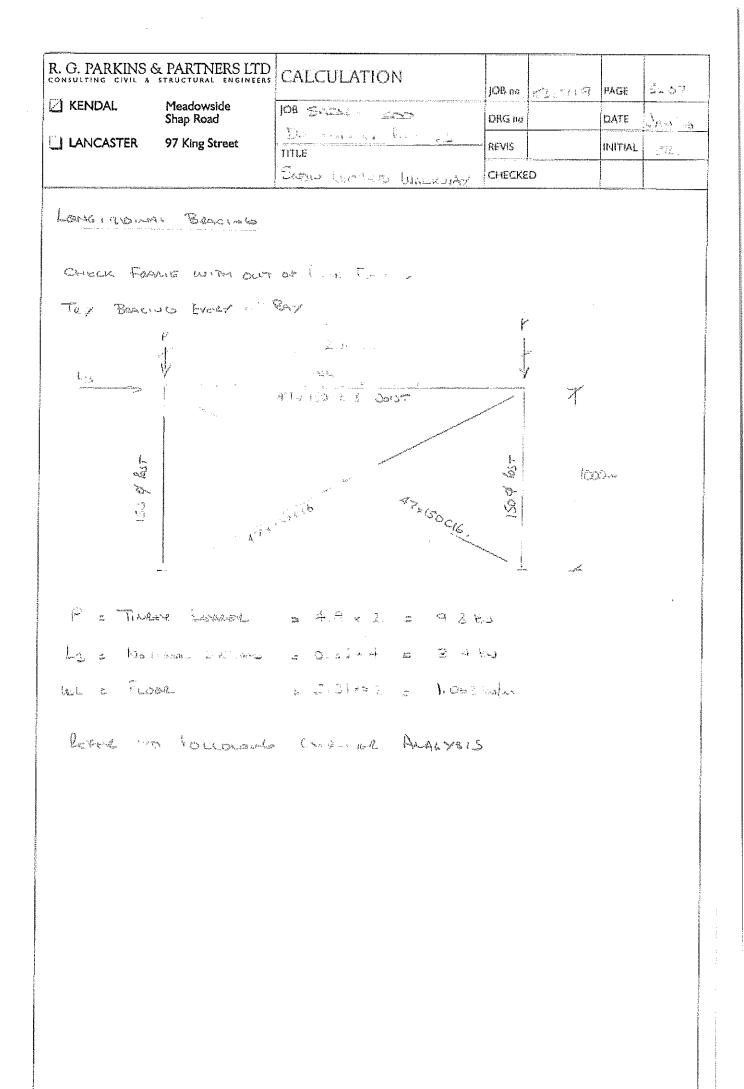

DESIGN INFORMATION

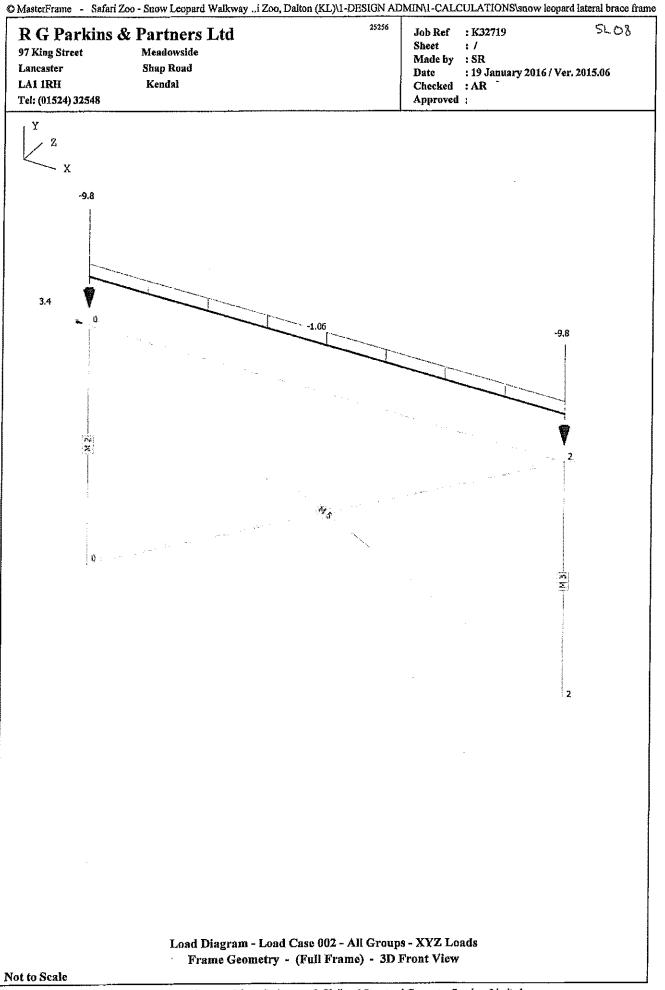

Timber Design to	BS 6399	✓
Masonry Design to	EC6	
Steel Design to	EC3	
RC Design to	EC2	

MATERIALS

Steel Grade	S275	
	S355	
Concrete Grade		
Reinforcement fy	250	
	500	

Others




		······································		1		
R. G. PARKINS	& PARTNERS LTD structural engineers	CALCULATION	JOB no	K32719	PAGE	BL03
	Meadowside Shap Road	JOB SAFARI 200	DRG no		DATE	JAJ 1/6
		DALTON - IN - FIELD	REVIS		INITIAL	sl
	****	TITLE	CHECKI	I ED		
	and a second state of the	SNOW LEOPARD WALK	<u> </u>			
Christian E	NET-20 Lost	2				
C18 160	x47 SPAN 20	~ Q seom c/c				
		CONNOT SOAN 800				> .
an Be anamre	Aseumon , CHA	Thelefore Londstrag proc 5 BSE399-1: 56 DISREGARDED 1 J OF LOND	1996 York	ATTS THE	<u>, –</u>	à
Lopard						
LOL =	(031+5)×0	higan.	- 2	1.124 W),	И	
Monut						
M a	$WL^{2}/8 = 2$	124×2×0125	1 ex	.062 ku	int	
REACTORS						
Fr = 1	$WL _2 = 2.$	124 × 2 × 0.5	= 2	.124 ks		
Benomo	Paraula to G	2011) (CHERR AR CI	6)			
Em, alm,	1)	NImi x k2 x k3 x l	K7 v K8			
K 2 = 1 K 3 = (3 K 4 = (3	0.8 1.5 300/150) ^{,,,} = 1.01 1.1	TABLE 16 (Scance (TABLE 17 (SHORT-TO B CLANDE 2.10.6 CLANDE 2.9	Cirss 3) 2011 Louis,26)			
Sm.adm.	11 = 5.3	× 0.8 × 1.5 × 1.08 × 1.				
Sm, a, 11	= <u>M</u> Z	$= \frac{1:062 \times 10^{6} \times 6}{47 \times 150^{6}}$	з а (5,03 N	mn?	: or

				1		
	STRUCTURAL ENGINEERS	CALCULATION	JOB no	K32719	PAGE	s.04
🖉 KENDAL	Meadowside Shap Road	JOB SAFALL ZOO	DRG no		DATE	DA. 16
	•	DALTON - IN - FURNEZS			+	
	97 King Street	TITLE	REVIS	l	INITIAL	<u> 92</u>
		SNOW LEOPARD WALKWAY	CHECK	ED		<u> </u>
white (On	<u>s</u> -)					
DEFUZER CON	<u>}</u>					
BENDING	= <u>5</u> x 2.12 374 880	4× 2000 4× 12 0× 0.8(k2)× 47×1503	4	·75 mm		
SURPL	= Ktorn x Mo AG	47 × 150× 550 ×0.8(4)		. 41 mg		
		= 2000 × 0.003				
47 × 150	C16 (m.) Th	Arene Joists At 400m	n Can	rees SATT	ISFACT	roe-)
Note :						
land of	SOLLA LECTIONS	L SUPPORT _ STATES T ULAR SECTIONS SHOW OF BUCKLING	RE	CHECLERO	0	
Table 4.3	(TIMBLE DE	SIGNERS NAMON				
Ix =	47.150 ² =	13218750 mpn 3 J7 =	150 - 4	-7 ² = 129	רצרר.	5,3
Rano Ir Ir	= 1 <u>321875</u> 1297717	O_{\pm} = 10.2 Decrea c	sr ler	`YQA (=> T		
10-20	= Pursue	Should be Held in Li	NE 4	1 - Tha ine (inos.	
	Red. Nossias	Recentless or Each t	w E	TRIES-1	Jaura	ξς. καγ
Summery			7	x		
		man 47x150 616				
		PACKYO AT 400mm Chints				
NOCOMS	AT EACLA	END BETWEENS THE ?	to carra	s to Pa	s∕∿a ≦	79 * 5
LATECAL	LESTLANT .					

F*****	· · · · · · · · · · · · · · · · · · ·			1	T	1
R. G. PARKINS	& PARTNERS LTD STRUCTURAL ENGINEERS	CALCULATION	јОВ по	1632719	PAGE	SLOS
🛛 KENDAL	Meadowside Shap Road	108 SAFAR, 200	DRG no		DATE	DAW 16
	97 King Street	Donton - In FUREDS	REVIS		INITIAL	52
		Show LEOPARD WALKUAY	CHECK	ED		
CHUECK	TINGGE BURGE	<u>К.</u> Ехібтыс Мемвее = 47у	50 CI	8		
Post f	85h Port					
COL =	(031+5) ×		- S	31 Ku/m		
Bows. Jo Mane			G	- }		
Nλ =	WL 18 =	5.3141.852 40 125	<u> </u>	2.7 King		
leacnows						
F _V a	witz = =	531, 18540 5	- 4	9 100		
Bano, 20 P	and the second	~ <u></u>				
Smiadan, 11	ب بر بر	5.8 x Ez = k3 x K7				
		5.8× 0.8×1.5× 1.08	"a 7.	S N/mm?		
8m.a, 1)	- 2	$\frac{27 \times 10^{5} \times 6}{47 \times 150^{2}}$	<u>*</u> 12	9 Name	ہ ما ج	TAIL!
Ter ADDIT	ange 47 x S	0				
Sm,a, 11	: 2	27×10°×6 47×3007	ы 1,	·2 ~) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	z	아너
d, nax	- <u>5 - 531</u> 319 Suc	× 1350 ⁴ × 12 >× 1 × 300 ² × 0.8	an a	65~		, or!

R. G. PARKINS & PARTNERS LTD CALCULATION CONSULTING CIVIL & STRUCTURAL \$1.06 PAGE JOB no K32719 Meadowside JOB SACAR, ZOO **DRG** no DATE 2011/16 Shap Road DALTONI- IN- FLYENESS 97 King Street REVIS INITIAL 22 TITLE CHECKED Show LEOPARD WALKUMY Eno Benzius Bann (com) CHECK BOLTED CONTERTION TINGLY TO TINGER JOINT IN BASK SINDLE SHEER $\int_{a}^{b} F_{r} = 4.9 \, \mathrm{ku}.$ @ MIO Existivo 47×150 OIM O 30 @ H12. 50 New 47, 150 C16 S MIZ 50 Faden = Fx K36 x KS7 F = 1.96 (MID) 2.26 (MIZ) TABLE 70, SHORT TOM RED TO GRANT THROUGH \$700 SERVICE GASS 3 KS6 = 0.70 Ks7 = 1.00 4NO BUTS = ((196+2)+(226+2)) ×0.7.1 = 5.9K > 4.9K OV! " PLOUDE ADDITIONAL 47×150 CIG (MANAL) TIAMER FINE BENEATED EXISTAG 47 × 150 BEAREN AND FIXED TO 105 TS US. JG 2 Nº M12 BOUTS AT SOMM CENTRES. CHECK BOUTS WITH OUT OF PLANE LATERA LAADWA O. 85 K MIO perpendicular to grain is hast town. Horayal #Ten = 1.96+07x1 = 2.744 MIZ 11 = 2.26:0.7x2 = 3.164 5.91 $U_{N,N} = \frac{S_{N,1}}{S_{N,1}} + \frac{S_{N,2}}{S_{N,2}} = \frac{S_{N,2}}{S_{N,2}} + \frac{4.9}{S_{N,2}} = 0.1164 = 1 = 0.456 \text{ m} \cdot 04$

Software produced by www.MasterSeries.com @ Civil and Structural Computer Services Limited.

R G Parkins & Partne 77 King Street Meadows Lancaster Shap Roa LA1 1RH Kendal	de	Job Ref : K32719 Sheet : / Made by : SR Date : 19 January 2016 / Ver. 20 Checked : AR	SL 09 15.06
Cel; (01524) 32548		Approved :	
	· · · · · · · · · · · · · · · · · · ·		
	MasterKey : Timber D		
Axial I	oad With Moment Design to		
	Member 1 (N.1-N.2) @ I	Level I	
	L		<u> </u>
F (kN)			a-jx ∣h
· (+) ·	WJ	······································	
20-13-14 - 14 - 14 - 14 - 14 - 14 - 14 - 1	nunu holisti (1997) an Azart I. an Aliman (1997) an	The second Large A	/ 1
Summary Design Data			
Design Cases Covered	1.0 L1		
Deflection Cases Covered	1.0 L1		
Section Size	b = 47, h 150 Regularized Section in St		
Section Properties (cm ² ,cm ³ ,cm)	Area 70.5, Zx 176.3, Zy 55.2, rx 4.33, r 3 : External uses fully exposed, Short Te	erm loading	
Specification Integrated Design	Critical Case 2		
Member Details	F = 0.801 kN, Lx = 2.0 m, Ly = 2.0 m, l	Lex = 1.0 Lx, Ley = 1.0 Ly	
	Bearing length B 75, Distance to Bearing	g 150 mm	
	esses (Strength Class C18) 0.80 x 1.50 x 1.08 x 1.00 x 5.80	7.51 N/mm ²	
$\sigma_{\text{mx.adm}} = K_2 K_3 K_7 K_8 \sigma_{\text{m}}$	$0.80 \times 1.50 \times 1.08 \times 1.00 \times 5.80$ $0.80 \times 1.50 \times 1.17 \times 1.00 \times 5.80$	8.14 N/mm ²	
$\sigma_{\rm my,adm} = K_2 K_3 K_{7v} K_8 \sigma_m$	$0.60 \times 1.50 \times 1.00 \times 7.10$	6.39 N/mm ²	
$\sigma_{c,sdm} = K_2.K_3.K_3.\sigma_c$ $\sigma_{c,sdm} = K_2.K_3.K_4.K_8.\sigma_c$	$0.60 \times 1.50 \times 1.14 \times 1.00 \times 1.70$	1.74 N/mm ²	
$\tau_{\rm rdm} = K_2.K_3.K_3.\tau$	0.90 x 1.50 x 1.00 x 0.67	0.90 N/mm ²	
$E = K_2.K_9.E_{min}$ (Compression)	0.80 x 1.00 x 6000	4800 N/mm ²	
$E = K_2 \cdot E_{mean}$ (Deflection)	0.80 x 9100	7280 N/mm ²	
Temperator Desistance			
Compression Resistance $\lambda = Max(Lex/rx, Ley/ry)$	Max(200/4.330, 200/1.357)≤ 180	147.4	OK
$K_{12} = fn(\lambda, K_3.\sigma_c, E)$	147.41, 6.39, 4800	0.189	
$\sigma_{c,adm} = K_{12} \cdot \sigma_{c,adm}$	0.189 x 6.39	1.20 N/mm ²	A17
$\sigma_{ca} = F/Area$	0.801 / 70.5≤ 1.20	0.11 N/mm ²	OK
Axial Load with Moments	Check		
Critical Design Location	$\mathbf{X} = 0.980$		
$\sigma_{mx,a} = Mx/Zx$	0.530 / 176.25≤ 7.51	3.01 N/mm ²	OK.
$\sigma_{\text{mx},\text{adm}} = \sigma_{\text{mx},\text{adm}} (1-1.5 \text{ K}_{12}.\sigma_{\text{c},\text{s}}/\sigma_{\text{c}})$	7.51 (1-1.5x0.189x0.11/2.18)	7.40 N/mm ²	017
$\sigma/\sigma_{o,adm}+\sigma_{mx}/\sigma_{mx}$ adm	0.11/1.20+3.01/7.40	0.501	OK
Shear and Bearing Check			
Critical Design Location	X = 0.000		
$\tau_a = 1.5 \text{ Fv} / \text{Area}$	$1.5 \ge 1.062 / 70.5 \le 0.90$	0.23 N/mm ²	OK
$\sigma_{cax} = Fvx / (b.Bx)$	1.062 / (47 x 75)≤ 1.74	0.30 N/mm ²	OK
Jaffantian Charle (Shaar I	Deflection NOT Included)		
JULICOUDI UNCCK (DIICAT I	WINNER TINE THORSENAN		
Critical Load Case 002 : Live Only	(Serviceability)	2.30 mm	OK.

Software produced by www.MasterSeries.com C Civil and Structural Computer Services Limited.

R G Parkins & Partner 7 King Street Meadowside		Job Ref : K32719 Sheet : / Madu by : SR	5610
ancaster Shap Road		Date : 19 January 2016 / Ver. 20	15.06
A1 1RH Kendai		Checked : AR	
'el: (01524) 32548		Approved :	
	MasterKey : Timber D ad With Moment Design to Member 2 (N.1-N.3) @ L L) BS 5268 : Part 2	y 1
F (kN)			<u> </u>
	an a		h 1
Summary Design Data			
Design Cases Covered	1.0 L1		
Deflection Cases Covered	1.0 Ll	th Close C16	
Section Size	D = 150 Solid circular section in Streng Area 176.7, Zx 331.3, Zy 331.3, rx 3.75	LE CIASS CTO	
Section Properties (cm ² ,cm ³ ,cm)	3 : External uses fully exposed, Short Te	erm loading	
Specification	Use minimum modulus		
Integrated Design	Critical Case 2	•	
Member Details	F = 9.562 kN, Lx = 1.0 m, Ly = 1.0 m, I	Lex = 1.0 Lx, Ley = 1.0 Ly	
	Bearing length B 75, Distance to Bearin		
Grade and Admissible Stre	asas (Strangth Class C16)		
$\sigma_{mx,adm} = K_2.K_3.K_6.K_{7x}.K_8.\sigma_m$	0.80 x 1.50 x 1.18 x 1.08 x 1.00 x 5.30	8.10 N/mm ²	
$\sigma_{mx,adm} = K_2.K_3.K_6.K_{7y}.K_8.\sigma_m$ $\sigma_{my,adm} = K_2.K_3.K_6.K_{7y}.K_8.\sigma_m$	0.80 x 1.50 x 1.18 x 1.08 x 1.00 x 5.30	8,10 N/mm ²	
$\sigma_{c,adm} = K_2, K_3, K_3, \sigma_c$	0.60 x 1,50 x 1.00 x 6.80	6.12 N/mm ²	
$\sigma_{c,adm} = K_2, K_3, K_4, K_8, \sigma_c$	0.60 x 1.50 x 1.14 x 1.00 x 1.70	1.74 N/mm ² 0.90 N/mm ²	
$\tau_{adm} = K_2 \cdot K_3 \cdot K_8 \cdot \tau$	0.90 x 1.50 x 1.00 x 0.67	4640 N/mm ²	
$\mathbf{E} = \mathbf{K}_{2}, \mathbf{K}_{9}, \mathbf{E}_{\min}$	0.80 x 1.00 x 5800	1010 101111	
Compression Resistance			
$\lambda = Max(Lex/rx, Ley/ry)$	Max(100/3.750, 100/3.750)≤ 180	26.7	OK
$K_{12} = fn(\lambda, K_3.\sigma_c, E)$	26.67, 6.12, 4640	0.868	
$\sigma_{c,zdm} = K_{12} \cdot \sigma_{c,zdm}$	0.868 x 6.12	5.31 N/mm ²	OK
$\sigma_{c,a} = F/Area$	9,562 / 176.7≤ 5.31	0.54 N/mm ²	UK
Axial Load with Moments			
Critical Design Location	X = 0.000	0.102	OK
σc/σc.adm	0.54/5.31	0.102	~**

R G Parkins & P	artners Ltd		K32719	SLI
	Aeadowside	Sheet : Made by :	/ 6D	
-	Shap Road		38. 19 January 2016 / Ver. 20	15.06
	Kendal	Checked :		
Fel: (01524) 32548		Approved :		
A F (kN) (-) (+) Summary Design D Design Cases Covered Deflection Cases Covered Deflection Cases Covered Section Size Section Properties (cm ² , cm Specification	ata 1.0 L1 1.0 L1 1	N.2-N.4) @ Level 1	(kN) * 4.4444	
Shorten and	Use minimum modul	lus		
Integrated Design	Critical Case 2		1.0.7	
Member Details		1.0 m, Ly = 1.0 m, Lex = 1.0 Lx, I Distance to Bearing 150 mm	Ley = 1.0 Ly	
$\sigma_{my.adm} = K_2.K_3.K_6.K_{7y}.K_8$ $\sigma_{e.sdm} = K_2.K_3.K_8.\sigma_e$ $\sigma_{c.adm} = K_2.K_3.K_4.K_8.\sigma_e$ $\tau_{adm} = K_2.K_3.K_8.\tau$ $E = K_2.K_9.E_{min}$ Compression Resist $\lambda = Max(Lex/rx, Ley/ry)$ $K_{12} = fn(\lambda, K_3.\sigma_e, E)$ $\sigma_{e.adm} = K_{12}.\sigma_{e.adm}$	0,60 x 1,50 x 1,00 x (0,60 x 1,50 x 1,14 x) 0,90 x 1,50 x 1,00 x (0,80 x 1,00 x 5800	6.80 1.00 × 1.70 0.67 /3.750)≤ 180	8.10 N/mm ² 6.12 N/mm ² 1.74 N/mm ³ 0.90 N/mm ³ 4640 N/mm ³ 26.7 0.868 5.31 N/mm ² 0.64 N/mm ²	OK.
$\mathbf{r} = \mathbf{F} / \Delta \mathbf{r} \mathbf{e} \mathbf{s}$				
$\sigma_{c,s} = F/Area$				
$\sigma_{c,a} = F/Arca$	ments Check			
σ _{c.a} = F/Area Axial Load with Me Critical Design Location	X=0.000		0 120	OV
_{Ges} = F/Area Axial Load with Me			0.120	ок
σ _{c.a} = F/Area Axial Load with Me Critical Design Location	X=0.000		0,120	ОК
σ _{c.a} = F/Area Axial Load with Me Critical Design Location	X=0.000		0.120	ОК

Software produced by www.MasterSeries.com Civil and Structural Computer Services Limited.

R G Parkins & Partner	rs Ltd 25256	Job Ref : K32719	SLIZ
97 King Street Meadowsid	le	Sheet :/	
Lancaster Shap Road		Made by : SR Date : 19 January 2016 / Ver. 2	01E 05
LA1 1RH Kendal		Date : 19 January 2016 / Ver. 2 Checked : AR	012.00
Tel: (01524) 32548		Approved :	
Avial L	MasterKey : Timber D ad With Moment Design to	•	
	Member 4 (N.2-N.3) @ 1		
			<u>b</u> ,y
∠ F (kN)		F (kN)	
(-) (+)	Wu		k k k
			y +
Summary Design Data			
Design Cases Covered	1.0 L1		
Deflection Cases Covered	1.0 L1		
Section Size	b = 47, h 150 Basic Section in Strength		
Section Properties (cm ² ,cm ³ ,cm)	Area 70.5, Zx 176.3, Zy 55.2, rx 4.33, r	y 1.36	
Specification	3 : External uses fully exposed, Short Te	erm loading	
The second second	Use minimum modulus		
Integrated Design	Critical Case 2 $E = 0.895$ (b) $L_{H} = 0.027$ (c) $L_{H} = 0.021$		
Member Details	F = -0.895 kN, Lx = 2.236 m, Ly = 2.23 Bearing length B 75, Distance to Bearing		
Grade and Admissible Stre $\sigma_{mx,adm} = K_2.K_3.K_{7x}.K_8.\sigma_m$ $\sigma_{my,adm} = K_2.K_3.K_{7y}.K_8.\sigma_m$ $\sigma_{t,adm} = K_2.K_3.K_8.K_{14}.\sigma_t$ $\sigma_{c,adm} = K_2.K_3.K_4.K_8.\sigma_c$ $\tau_{adm} = K_2.K_3.K_{4}.\tau$ $E = K_2.K_9.E_{min}$	sses (Strength Class C16) 0.80 x 1.50 x 1.08 x 1.00 x 5.30 0.80 x 1.50 x 1.17 x 1.00 x 5.30 0.80 x 1.50 x 1.17 x 1.00 x 5.30 0.60 x 1.50 x 1.00 x 1.08 x 3.20 0.60 x 1.50 x 1.14 x 1.00 x 1.70 0.90 x 1.50 x 1.00 x 0.67 0.80 x 1.00 x 5800	6.86 N/mm² 7.44 N/mm² 4.14 N/mm² 1.74 N/mm² 0.90 N/mm² 4640 N/mm²	
cnsile Resistance			
$\sigma_{ta} = F/Area$	0.895 / 70.5≤ 4.14	0.13 N/mm ²	ОК
xial Load with Moments (
Critical Design Location	X = 0.000	0.021	OV
σι∕σt.adm	0.13/4.14	0.031	ОК

F (kN) F (kN)	1.0 L1 1.0 L1 1.0 L1 b = 47, h 147 Regularized Section in S Area 69.1, Zx 169.3, Zy 54.1, rx 4.24, 3 : External uses fully exposed, Short 7 Use minimum modulus Critical Case 2 F = 2.906 kN, Lx = 2.236 m, Ly = 2.23 Bearing length B 75, Distance to Beari	the base of the second	
Summary Design Data Design Cases Covered Deflection Cases Covered Section Size Section Properties (cm ² ,cm ³ ,cm) Specification Integrated Design Member Details Grade and Admissible Stresse Omx.adm = K ₂ .K ₃ .K _{2x} .K ₈ .Gm	1.0 L1 1.0 L1 b = 47, h 147 Regularized Section in S Area 69.1, Zx 169.3, Zy 54.1, rx 4.24, 3 : External uses fully exposed, Short 7 Use minimum modulus Critical Case 2 F = 2.906 kN, Lx = 2.236 m, Ly = 2.23 Bearing length B 75, Distance to Beari	ry 1.36 Ferm loading 16 m, Lex = 1.0 Lx, Ley = 1.0 Ly	
Design Cases Covered Deflection Cases Covered Section Size Section Properties (cm ² , cm ³ , cm) Specification Integrated Design Member Details Grade and Admissible Stresse _{Oux.sdm} = K ₂ , K ₃ , K _{7x} , K ₈ , G _m	1.0 L1 b = 47, h 147 Regularized Section in S Area 69.1, Zx 169.3, Zy 54.1, rx 4.24, 3 : External uses fully exposed, Short 7 Use minimum modulus Critical Case 2 F = 2.906 kN, Lx = 2.236 m, Ly = 2.23 Bearing length B 75, Distance to Beari	ry 1.36 Ferm loading 16 m, Lex = 1.0 Lx, Ley = 1.0 Ly	
Deflection Cases Covered Section Size Section Properties (cm^2, cm^3, cm) Specification Integrated Design Member Details Grade and Admissible Stresse $\sigma_{nx,sdm} = K_2, K_3, K_{7x}, K_8, \sigma_m$	1.0 L1 b = 47, h 147 Regularized Section in S Area 69.1, Zx 169.3, Zy 54.1, rx 4.24, 3 : External uses fully exposed, Short 7 Use minimum modulus Critical Case 2 F = 2.906 kN, Lx = 2.236 m, Ly = 2.23 Bearing length B 75, Distance to Beari	ry 1.36 Ferm loading 16 m, Lex = 1.0 Lx, Ley = 1.0 Ly	
Section Size Section Properties (cm ² , cm ³ , cm) Specification Integrated Design Member Details Grade and Admissible Stresse $\sigma_{nx,sdm} = K_2, K_3, K_{7x}, K_8, \sigma_m$	b = 47, h 147 Regularized Section in S Area 69.1, Zx 169.3, Zy 54.1, rx 4.24, 3 : External uses fully exposed, Short 7 Use minimum modulus Critical Case 2 F = 2.906 kN, Lx = 2.236 m, Ly = 2.23 Bearing length B 75, Distance to Beari	ry 1.36 Ferm loading 16 m, Lex = 1.0 Lx, Ley = 1.0 Ly	
Section Properties (cm ² ,cm ³ ,cm) Specification Integrated Design Member Details Grade and Admissible Stresse $\sigma_{nx,sdm} = K_2, K_3, K_{7x}, K_8, \sigma_m$	Area 69.1, Zx 169.3, Zy 54.1, rx 4.24, 3 : External uses fully exposed, Short 7 Use minimum modulus Critical Case 2 F = 2.906 kN, Lx = 2.236 m, Ly = 2.23 Bearing length B 75, Distance to Beari	ry 1.36 Ferm loading 16 m, Lex = 1.0 Lx, Ley = 1.0 Ly	
Specification Integrated Design Member Details Grade and Admissible Stresse $\sigma_{nx,sdm} = K_2, K_3, K_{7x}, K_8, \sigma_m$	3 : External uses fully exposed, Short 7 Use minimum modulus Critical Case 2 F = 2.906 kN, Lx = 2.236 m, Ly = 2.23 Bearing length B 75, Distance to Beari	Ferm loading 16 m, Lex = 1.0 Lx, Ley = 1.0 Ly	
Integrated Design Member Details Grade and Admissible Stresse $\sigma_{nx,sdm} = K_2, K_3, K_{7x}, K_8, \sigma_m$	Use minimum modulus Critical Case 2 F = 2.906 kN, Lx = 2.236 m, Ly = 2.23 Bearing length B 75, Distance to Beari	6 m, Lex = 1.0 Lx, Ley = 1.0 Ly	
Member Details Grade and Admissible Stresse $\sigma_{nx,sdm} = K_2, K_3, K_{7x}, K_8, \sigma_m$	Critical Case 2 F = 2.906 kN, Lx = 2.236 m, Ly = 2.23 Bearing length B 75, Distance to Beari		
Member Details Grade and Admissible Stresse $\sigma_{nx,sdm} = K_2 \cdot K_3 \cdot K_{7x} \cdot K_8 \cdot \sigma_m$	Bearing length B 75, Distance to Beari		
$\sigma_{\text{nux.adm}} = K_2 K_3 K_{7x} K_8 \sigma_m$		ng 150 mm	
$\begin{split} \sigma_{my.adm} &= K_2.K_3.K_{7\nu}.K_8.\sigma_m\\ \sigma_{c.adm} &= K_2.K_3.K_8.\sigma_c\\ \sigma_{c.adm} &= K_2.K_3.K_4.K_8.\sigma_c\\ \tau_{adm} &= K_2.K_3.K_8.\tau \end{split}$	0.80 x 1.50 x 1.08 x 1.00 x 5.30 0.80 x 1.50 x 1.17 x 1.00 x 5.30 0.60 x 1.50 x 1.17 x 1.00 x 5.30 0.60 x 1.50 x 1.00 x 6.80 0.60 x 1.50 x 1.14 x 1.00 x 1.70 0.90 x 1.50 x 1.00 x 0.67	6.88 N/mm ² 7.44 N/mm ² 6.12 N/mm ² 1.74 N/mm ² 0.90 N/mm ²	
$\mathbf{E} = \mathbf{K}_2.\mathbf{K}_9.\mathbf{E}_{min}$	0.80 x 1.00 x 5800	4640 N/mm ²	
Compression Resistance			
$\lambda = Max(Lex/rx, Ley/ry)$	$Max(224/4.244, 224/1.357) \le 180$	164.8	OK.
$K_{12} = fn(\lambda, K_3.\sigma_c, E)$	164.80, 6.12, 4640 0.156 x 6.12	0.156 0.95 N/mm²	
$\sigma_{c,adm} = K_{12} \cdot \sigma_{a,adm}$ $\sigma_{c,a} = F/Arca$	$2.906/69.1 \le 0.95$	0.42 N/mm ²	OK.
xial Load with Moments Ch			
	X = 0.000	~ · · · ·	077
σ√σ _{0.adm}	0.42/0.95	0.441	OK

Software produced by www.MasterSeries.com Civil and Structural Computer Services Limited.

R. G. PARKINS & PARTNERS LTD CALCULATION PAGE JOB no 1832719 SL 14 Meadowside 108 EARAEN 200 DRG no DATE Shap Road JA~ 16 DALTON. 13- FURNESS 97 King Street REVIS INITIAL 52 TITLE BEAR WALKWAY CHECKED Charles and the second sectors fr = 2.906 Km Messar Size = 47 × 150 CIG TIMBLE France Fx RS6x KS7 change 6.6.6 Tey 2NO MIZ F TABLE 70 SHORT TECH THEOLOGY 47M PARALLEL TO GARN = 2.61 V:6 = 0.70 SERVICE CUROL 3 157 - 1.00 M12 - Fadm = 2.6 (x0 7 x1 = 1.827 tw : 2 M12 , 1827x2 = 3.654k > 2906k1 OK. 100am 16 (762 min) \hat{U} G.Sdmid 40 ٨ (Admia) 60 150 \mathbf{O} (1.5 m) \$0 PEDUIDE 2 Nº MIZ LOCTO

.

R. G. PARKINS & PARTINERS LTD
COMMING CONSTRUCTIONCALCULATIONDB in (277) (9) PAGESULS[2] KENDALMeadoward
Ship ReadDO SAFEAL 200
Dataset 120DB in (277) (9) PAGESULS[2] KENDALMeadoward
Dataset 120DE transmission (1000)DATE
Dataset 120DATE
DATE[2] LANCASTER97 King StreetDE transmission (1000)DATE
Dataset 120DATE
DATE[3]
$$\frac{1}{2}$$
D. StudiesD. StudiesDE transmission (1000)[3] $\frac{1}{2}$ D. StudiesD. StudiesDE transmission (1000)[3] $\frac{1}{2}$ D. StudiesD. StudiesD. Studies[3] $\frac{1}{2}$ D. StudiesD.

ADD 47×150 C16 TINDER TOP HOLIZONTAL RAIL

, , ,

R G PARKINS & PARTNERS LTD CONSULTING CIVIL & STRUCTURAL ENGINEERS	CALCULATION	IS	
Meadowside Shap Road Kendai LA9 6NY Tel: (01539) 729393 Fax: (01539) 740609		JOB NUMBER	K32719
97 King Street Lancaster LA1 1RH Tel: (01524) 32548 Fax: (01524) 843998		DATE	18/01/16
		DESIGNED	SR

RELEVANT INFORMATION

R G Parkins & Partners Ltd – Calculations K32719-BW01 to BW20 and drawing K32719/A3/SK01A Bear walkway Strengthening Sections and Elevations

Architects – None

Others - None

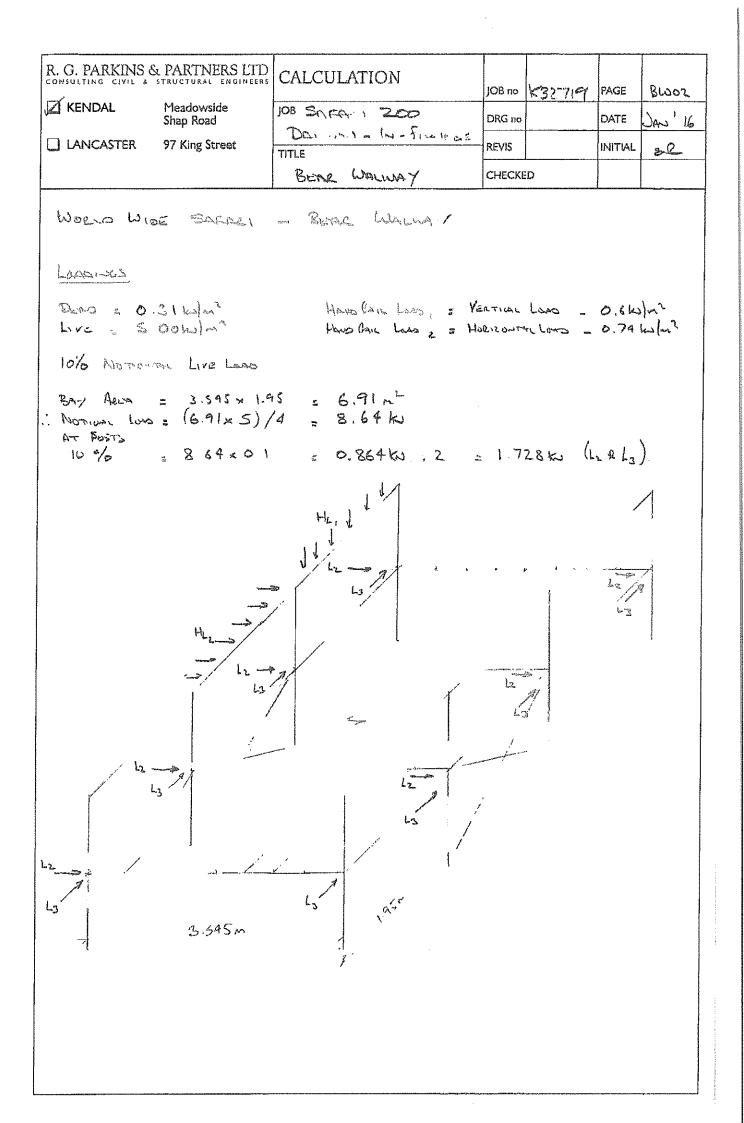
BEAR WALKWAY

SAFARI ZOO DALTON IN FURNESS

DESIGN INFORMATION

Timber Design to	BS 6399	√
Masonry Design to	EC6	
Steel Design to	EC3	
RC Design to	EC2	

MATERIALS


Steel Grade	S275	
	S355	
Concrete Grade		
Reinforcement fy	250	
	500	

Others

1	SE PARTNERS LTD STRUCTURAL ENGINEERS	CALCULATION	JOB no	K32719	PAGE	BUOI
	Meadowside Shap Road	108 SACARI 200	DRG no		DATE	DAN' 16
	97 King Street	DALTON - IN - FUELEBS	REVIS		INITIAL	-sl
		BEAR WALKWAY	CHECKE	D		

BEAR WALKWAY - LADRUA WOODE SAFARI

CRIECE EXISTING WALKWAY FOR INPOSED LOND OF SKI/M² (GENERAL DUTY WALKWAY - (REGULAR TWO-WAY PEDESTRIAN TRAFFIC)) TO BS 6399-1: 1996 TABLE 1-C3 OR A CONCENTRATED LOAD OF 36K. MINIMUM HORIZONTAL LOAD AT PARAPET 0.74 KJM

R. G. PARKINS & PARTNERS LTD.
 CALCULATION
 JOB no.
$$k_{32,719}$$
 PAGE
 Guides

 □ KENDAL
 Mediousian manimum
 DB SACRAZI 200
 DRG no.
 DATE
 JA. '/G

 □ LANCASTER
 97 King Street
 Dirth J. Frank S.
 Revis
 DITE
 JA. '/G

 □ LANCASTER
 97 King Street
 Dirth J. Frank S.
 Revis
 DITE
 JA. '/G

 □ LANCASTER
 97 King Street
 Dirth J. Ja. '/G
 Dirth J. Ja. '/G
 DITE
 JA. '/G

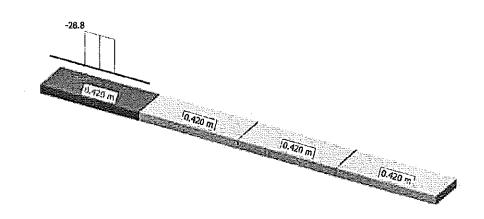
 □ LANCASTER
 97 King Street
 Dirth J. Ja. '/G
 Dirth J. Ja. '/G
 DITE
 JA. '/G

 □ LANCASTER
 97 King Street
 Dirth J. Ja. '/G
 Dirth J. Ja. '/G
 Dirth Ja. '/G
 Dirth Ja. '/G

 □ LANCASTER
 97 King Street
 Title
 Brank
 Dirth Ja. '/G
 Dirth Ja. '/G

 □ LANCASTER
 97 King Street
 Title
 Dirth Ja. '/G
 Dirth Ja. '/G
 Dirth Ja. '/G

 □ CANTAS
 State
 State
 1
 Dirth Ja. '/G
 Dirth Ja. '/G
 Dirth Ja. '/G


 □ CANTAS
 State
 State
 1
 State
 1
 Dirth Ja. '/G

 □ CANTAS
 State
 State
 State
 Dirth Ja. '/G
 Dirth Ja. '/G

 □ CANTAS
 State
 State
 Dirth Ja. '/G
 Dirth Ja. '/G

C MasterFrame - Safari Zoo - Dalton ...R\K32000\K32719 - Safari Zoo, Dalton (KL)\1-DESIGN ADMIN\1-CALCULATIONS\bear walkway decking

LancasterShap RoadDate: 18 January 2016 / Ver. 2015.06LA1 1RHKendalChecked : ARTel: (01524) 32548Approved :	LA1 1RH	Meadowside Shap Road	Checked	: 18 January 2016 / Ver. 2015.06 : AR
---	---------	-------------------------	---------	--

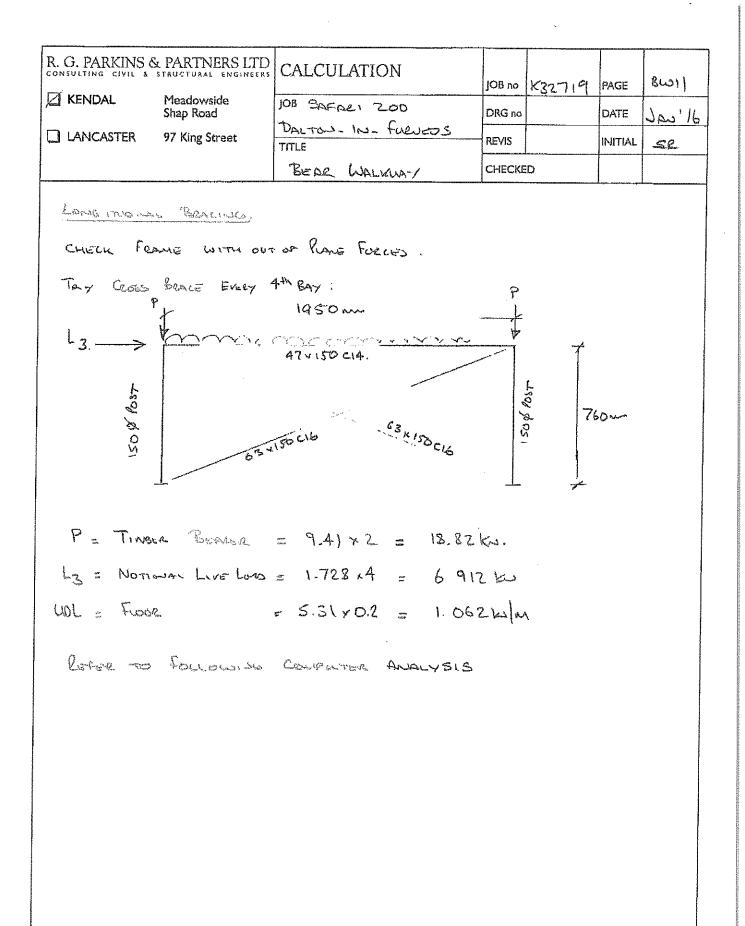
Load Diagram - Load Case 002 - All Groups - XYZ Loads Frame Geometry - (Full Frame) - 3D Front View

Not to Scale

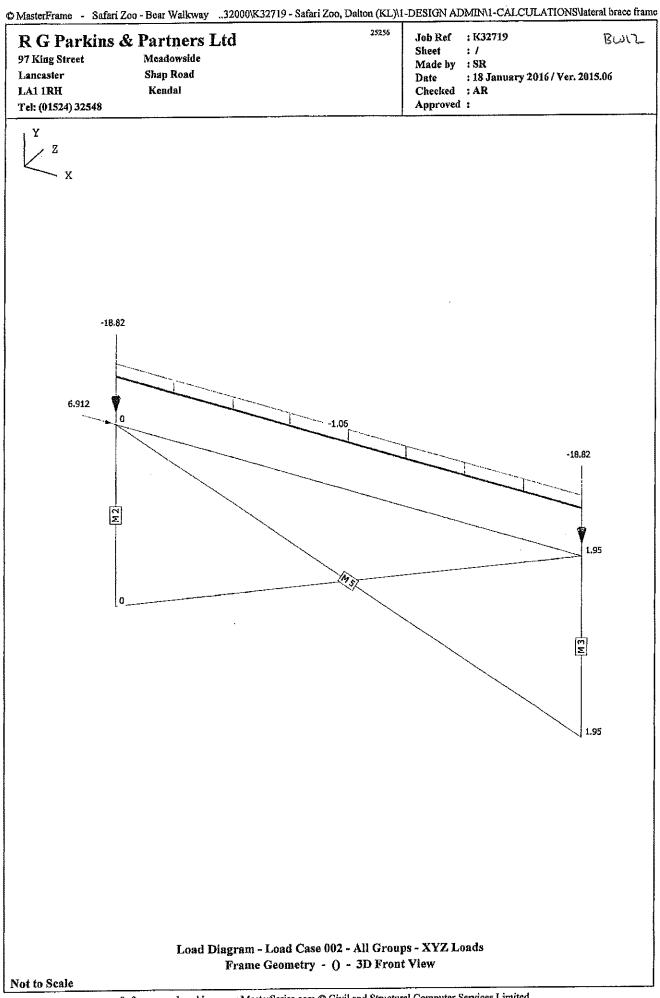
Software produced by www.MasterSeries.com C Civil and Structural Computer Services Limited.

	Kins & Par Mea Shaj Ker	tners Ltd dowside 9 Road adal	-	25256 25256 [fel: (01539) 729393	Job Ref Sheet Made by Date Checked Approved	: K32719 : / : SR : 18 January 20 : AR	10NS\bear walkway de Zinto 16 / Ver. 2015.06
	Member Section : 15 Load Ca Live Only (Se	50x38 C16 ase 002					
Axial Fo	rce (kN)	Torque	(kN.m)				
Fmax	0.00	Tmax	0.00	- the second state of the second			
Fmin	0.00	Tmin	0.00	0,420 m	0,420 m	0,420 m	0.420 m
[1.41]					· · · · · · · · · · · · · · · · · · ·		
L							-2.19
			Shear Fore	e : Major Axis			
				0.24			-0.16
		B	lending Mon	ient : Major Axis			
			ſ	-0.50			
		1		ape : Major Axis			
-				om © Civil and Structu			

Lancaster LA1 1RH Tel: (01524) 32548	z Partners I Meadowside Shap Road Kendal	25256 25256	Job Ref : K32 Sheet : / Made by : SR Date : 18 J Checked : AR Approved ;	anuary 2016 / Ver. 20	BW06 115.86
		MasterKey : Timber D With Moment Design to Member 1 (N:1-N.2) @ I	BS 5268 :]	Part 2 -+ ⁶	
<mark>€ (kN)</mark> (-) (+)	× W		• F (k)	●→ ×	-x h
Summary Design					
Design Cases Covered	1	1.0 L1			
Deflection Cases Cove Section Size	ered	1.0 L1 b = 150, h 38 Regularized Section in Str	ength Class C16		
Section Properties (cm	n².cm³.cm)	Area 57, Zx 36.1, Zy 142.5, rx 1.1, ry 4.	33		
Specification		3 : External uses fully exposed, Short Te	erm loading		
Integrated Design		Critical Case 2			
Member Details		F = 0.0 kN, $Lx = 0.42 m$, $Ly = 0.42 m$, I		≖ 1.0 Ly	
		Bearing length B 75, Distance to Bearin	g 150 mm		
Grade and Admi	issible Stresse	s (Strength Class C16)			
$\sigma_{mx.adm} = K_2.K_3.K_{7x}.K$		0.80 x 1.50 x 1.17 x 1.00 x 5.30		7.44 N/mm ²	
$\sigma_{ray,adm} = K_2, K_3, K_{7y}, K_3$	8.Om	0.80 x 1.50 x 1.08 x 1.00 x 5.30		6.86 N/mm ²	
$\sigma_{e.adm} = K_2.K_3.K_4.K_8.c$		0.60 x 1.50 x 1.14 x 1.00 x 1.70		1.74 N/mm ² 0.90 N/mm ²	
$\tau_{adm} = K_2 K_3 K_8 \tau$	i	0.90 x 1.50 x 1.00 x 0.67 0.80 x 8800		0.90 N/mm ²	
$E = K_2 \cdot E_{mean}$		0.00 x 0000			
	Moments Ch	eek			
vial I and with		X = 0.193			
Axial Load with	on			6.70 N/mm ²	
Critical Design Locati	on	0.242 / 36.1≤ 7.44		0.70 N/IIIIF	OK
	on	0.242 / 36.1≤ 7.44 6.70/7.44		0.900	OK OK
Critical Design Locati $\sigma_{mx,a} = Mx/Zx$ $\sigma_{nx}/\sigma_{mx,adm}$					
Critical Design Locati $\sigma_{mx.a} = Mx/Zx$ $\sigma_{mx}/\sigma_{mx.adm}$ Shear and Bearin	ng Check	6.70/7.44			
Critical Design Locati $\sigma_{mx,a} = Mx/Zx$ $\sigma_{mx}/\sigma_{mx,adm}$ Shear and Bearin Critical Design Locati	ng Check				
Critical Design Locati $\sigma_{mx,a} = Mx/Zx$ $\sigma_{nx}/\sigma_{mx,adm}$ Shear and Bearin Critical Design Locati $\tau_a = 1.5 \text{ Fv} / \text{Area}$	ng Check on	6.70/7.44 X = 0.420		0.900	OK
Critical Design Locati $\sigma_{mx,a} = Mx/Zx$ $\sigma_{nx}/\sigma_{mx,adm}$ Shear and Bearin Critical Design Locati $\tau_a = 1.5 \text{ Fv} / \text{Area}$ $\sigma_{cax} = \text{Fvx} / (b.Bx)$	ng Check on	6.70/7.44 X = 0.420 1.5 x 2.191 / 57 ≤ 0.90 2.191 / (150 x 75) ≤ 1.74		0.900 0.58 N/mm ²	OK OK
Critical Design Locati $\sigma_{mx,a} = Mx/Zx$ $\sigma_{mx}/\sigma_{mx,adm}$ Shear and Bearin Critical Design Locati $\tau_a = 1.5 \text{ Fv} / \text{Area}$ $\sigma_{cax} = \text{Fvx} / (b.Bx)$	ng Check ^{on} (Shear Defle	6.70/7.44 X = 0.420 1.5 x 2.191 / 57≤ 0.90 2.191 / (150 x 75)≤ 1.74 ction NOT Included)		0.900 0.58 N/mm ²	OK OK


Software produced by www.MasterSeries.com C Civil and Structural Computer Services Limited.

	(* J) A J) T' A J' T' A J' T' A J' T' A J' A J' A					
CONSULTING CIVIL &	& PARTNERS LTD		JOB no	K32719	PAGE	BW07
🔲 KENDAL	Meadowside Shap Road	108 SACARI 200	DRG no		DATE	JAN' 16
LANCASTER	97 King Street	DALTON- W- FUENERS	REVIS		INITIAL	sl
		BEAR WALKWAY	CHECKE	D		
		ан балан таруунун түрүүн түрүүн түрүүн байлай каларуунун түрүүн байлай түрүүн түрүүн түрүүн байлай байлай байла				
CHECK J	61973					
C14 150	x47 @ 41	2 de Erencempe Sa	AJ 5 8-1	Between I	bearen	
ere ang						
Contraction of the second s		A . O		2.22 6		
Vola (0.51+5) × 0	νμ.) X	2 2		м	
MONIONT						
M = h	$0L^{2}/8 = 2.7$	22 × 182 × 0.125	43 20	0.9 km	М	
Reserves						
· · · · · · · · · · · · · · · · · · ·	u n _ n	22×1.8 × 0 5	***	2 60		
tyr 50 Wi			-	KOLEEN, SHAPPINGAAA		
	Phanel TO					
Sm, adm,	.11 = 4.	Indan? (C14) x t2 x k3;	x ky x Kg			
K2 =	6.8	Toble 16 Troue 17	(sero a	· Gress 2)	\ \	
ks -	1.5 1.11	TAGUE 17 1.08 CLAUSE 2.10.1	(Shott -	Teran Lino		
	(300)150) =	1.08 CLAUSE 2.10.1 CLAUSE 2.9	Þ			
13		1×0.8×1.5×1.08×	1 -	5.84.)	2 444 2	
Em, adar,	1					. 1
Sm, a, N	- N 	$= \frac{0.9 \times 10^6 \times 6}{47 \times 150^2}$	Str. Ved	S. I J	چېنې 1	. 04 !
<u>Deficience</u>	_					
BENOLO	• <u> </u>	4 6800 × 0. ((K2) × 47×	<u>.</u>	4-2200	4	
		2				
	= <u>K</u>	$\frac{m \times M_0}{A_6} = \frac{1.2 \times 0.2 \times 10^{10}}{47 \times 150 \times 850 \times }$	10.8(kg) =	0.23.	yddiwethy.	
				4.45		
		an an an	-			. 1
Lind . T. No L	Declection =	1800 x 0.00%	925* 1627	5. † n	× •	. Ok'
de mores a adoutera	an alla i andara	s	10 4	an bhan an an thing	, ñv	. 1
47×156	3 C.14 TINE	ea Joists AT 4	1X - (AB4577	4.4°> >/***	135961	18-12-Y


					1			
	& PARTNERS LTD STRUCTURAL ENGINEERS	CALCULATION	JOB no	K32719	PAGE	BMOB		
	Meadowside Shap Road	108 SACALI ZOO	DRG no		DATE	JAJ' H		
	ANCASTER 97 King Street DALTON - IN - FURNESS REVIS INITIAL SO							
	TITLE CHECKED							
		DEAR WALKINGY						
Joist Com	9 ⁷⁷ 7							
CLAUSE	2 10 8 LAT	elan Supper - Snames	_1946		07 1			
BREATH	LATIO OF SOI	10 lectangular Sec	CCOL	SHOULD	BE			
Creaked	TO Ensource	THAT THELE IS NO	LISK	of Bu	((K))	حكد		
UNBER	DESIGN LOAD	۵.						
	2 (Designers Manuse)						
_				2)		-**		
J~ =	$\frac{47 \times 150^3}{12} =$	13218750nm2 Iy =	150 x 4 12	<u>7</u> = 12.9	787	1.5 non ²		
lano I	× = <u>13218-</u> × 12977	$\frac{750}{87.5} = 102$ Dece	ne of	le stea.	and for			
10-20	= Pennes	Should be Held in	とうら		k En	50		
	Nosami	s letouroso AT Each (2147	Bellon En	3 <u>7</u> 91	3 (
SUMMARY								
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 STALLAL 47 1 ISO CI						
A3 50	SPAGO AT	- 418m Centres, Pa	<u>ov 06</u>	TINS	EVL			
Nocerne	S AT EACY	END BETWEEN THE	06	<u>1875 TO</u>	Ro	<u>n de</u>		
Latora	L lesmans							

	Meadowside			K32719	PAGE	8009
KENDAL	Shap Road	108 SACARI 200 DALTONS - INS. FUENETS	DRG no		DATE	Jan '16
	97 King Street	TITLE	REVIS		INITIAL	SL
		BOAR WALKNAMY	CHECKE	D]	<u> </u>
Chetk, "f	inter Berle	~0				
Son 3 - 1 for harder of		Existing M	24.02.4	- 47, 1	150	c14
		EXISTING "	\$4040E *(<u> </u>	•
Pirch	Z. 443 m	A-Post				
Loss	· (0·31+5)	x 0.975		a 🗟 18	ka m	
Monor	= WL/8 =	5.18 x 3.5452 x 0.125		= 8.14	- km	
luceras		5 31 43 545 40 5		z 94	IKN.	
12-2-2-2-2-2-	hanun to Gan	i suad				
	1 = 4.1 × k2					
Ownershi	= 41×0.			= 4.92	N/mm?	
					ł	
		O BROW EXISTNG		<i>A</i> 14	. 1	1. ·
Emia, 1	1 5 <u>8.14 × 10</u> 47 × 5	<u>>² x 4</u> 80 2		= 4.16	N Mar	. OW.
Defiection						
Bens G	= <u>5</u> = 5 389 46	13× 35454 × 12 00× 47×5003×02		. 59	ning	
Sar 22	= Kyorn ~ Me	17 × 500 × 850 × 0.8		<u>а</u> 0.6	ሲ ል የአላ	
	A 6	47 x 500 x 850 x 0.8		6.5	en e	
LIM 1710	6 Spacethas	= 354540.00%		= 10.6	AX PA	Ok
		- 47 × 250 CI4 T.				
Ēv	15TNG 47x	250 CI4 TIMBUR BEN	Vere .	TO Fue	<u>n Sc</u>	20
Ď	er hybright					

R. G. PARKINS & PARTNERS LTD CALCULATION BUOD 108 no 1232719 PAGE Meadowside 108 SAFAR 200 DRG no DATE Shap Road Jaw 116 DAL-TONS-IN-FURNESS 97 King Street REVIS INITIAL S.L. TITLE BEAR WALKMA-1 CHECKED CHECK BOLTEO BEHRLE COMMECTIME TINGER TO TINGER JOINT IN PASIC SHARE SMEAR P P = 9.41KW TINGLE BEARER Las Lo = 1.728 KJ NOTIANAL LIVE LARG : TBULL 69 - C14 Fadm perpendicular to gram A HIO 47 x 250 @ MI6 $MIO = 1.83 \times 0.7 \times 200 = 2562$ CIA MI6 = 258 , 0, 7 x 4N° = 7.27 + O MIO 9.786 ku e Mild 47,250 67 @ MI6 CIA Fach Parallel to grain \$ MIG . MID = 2.08 x 0.7 x 2 10° = 2.912 MI6 = 3 11 x 0.7 x 4 N" = 8.708 11.62.ks 13. Fadm, parp = 9786 > 9.41 W = Ok! Fran, par = 1162 > 1.7286 . 04! $\frac{9.41}{9.780} + \frac{1.728}{1.62} = 0.962 + 0.149 = 1.11 FAIL'$ WAITY = LoliAce EXISTING MID WITH MIG. Fadmille 2.58×0.7×6 = 10.836 K - -Fudmiss 3.11 v 0.7 x6 = 13.062 kd $W_{117} = \frac{9.41}{10.836} + \frac{1.728}{13.062} \le 1 = 0.868 + 0.132 = 1$. OK. USE 6 NO MIG BOUTS

Software produced by www.MasterSeries.com Civil and Structural Computer Services Limited.

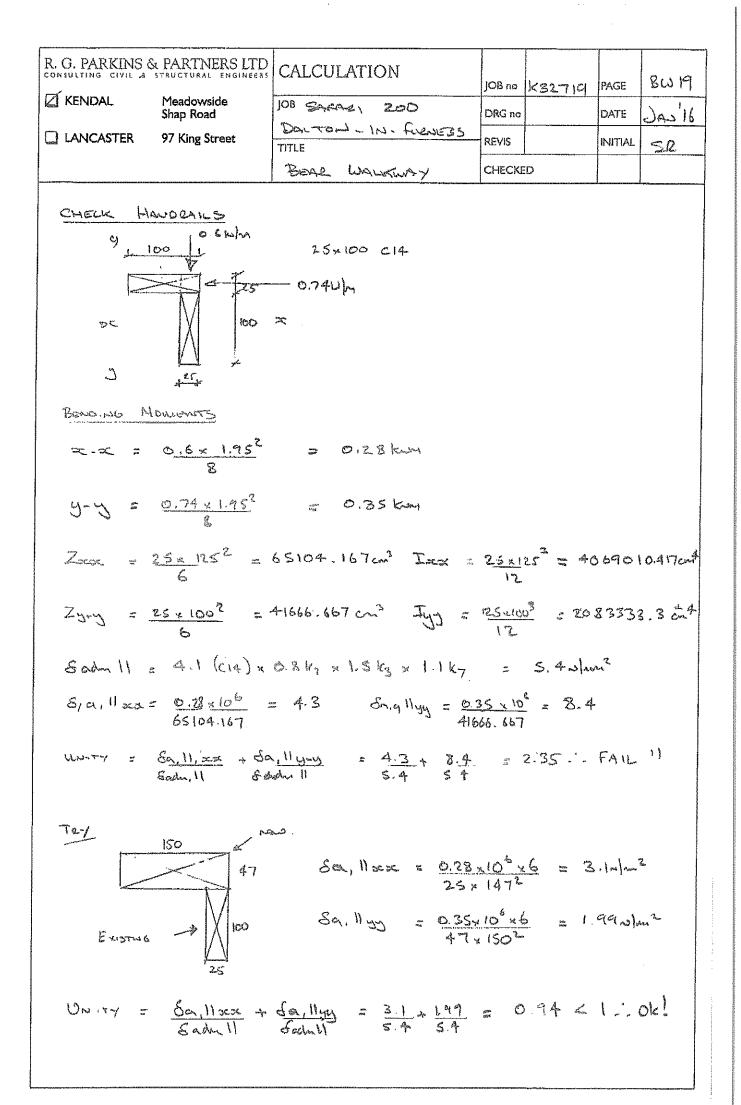
R G Parkins & Partners 97 King Street Meadowside Lancaster Shap Road LA1 1RH Kendal Tel: (01524) 32548		Job Ref : K32719 Sheet : / Made by : SR Date : 18 January 2016 / Ver. 20 Checked : AR Approved :	BW (<u>1</u> 15.06
	MasterKey : Timber D	esign	
Axial Lo	ad With Moment Design to	BS 5268 : Part 2	
	Member 1 (N.1-N.2) @ I	Level 1	
+	ـــــــــــــــــــــــــــــــــــــ		
F (kN)		F (kN) ×	s h
(-) (+)	W)	(+) (-)	
	under al primer and the second se		τ T
Summary Design Data			
Design Cases Covered	1.0 L1		
Deflection Cases Covered	1.0 L1 b = 47, h 150 Regularized Section in Stu	renoth Class C14	
Section Size	b = 47, n 150 Regularized Section in Su Area 70.5, Zx 176.3, Zy 55.2, rx 4.33, r	v 1 36	
Section Properties (cm ² ,cm ³ ,cm)	3 : External uses fully exposed, Short T	erm loading	
Specification	Critical Case 2	crini iouunig	
Integrated Design Member Details	F = 1.542 kN, Lx = 1.95 m, Ly = 1.95 m	$h_{\rm Lex} = 1.0 \text{Lx}, \text{Ley} = 1.0 \text{Ly}$	
Memoer Details	Bearing length B 75, Distance to Bearing	ng 150 mm	
Grade and Admissible Stre	sses (Strength Class C14)	5.31 N/mm ²	
$\sigma_{mxadm} = K_2.K_3.K_{7x}.K_8.\sigma_m$	0.80 x 1.50 x 1.08 x 1.00 x 4.10	5,76 N/mm ²	
$\sigma_{my.adm} = K_2, K_3, K_{7v}, K_8, \sigma_m$	0.80 x 1.50 x 1.17 x 1.00 x 4.10	4.68 N/mm ²	
$\sigma_{c,adm} = K_2.K_3.K_8.\sigma_0$	0.60 x 1.50 x 1.00 x 5.20 0.60 x 1.50 x 1.14 x 1.00 x 1.60	1.64 N/mm ²	
$\sigma_{c, \mu dm} = K_2 \cdot K_3 \cdot K_4 \cdot K_8 \cdot \sigma_c$	0.90 x 1.50 x 1.00 x 0.60	0.81 N/mm ²	
$\tau_{sdm} = K_2.K_3.K_3.\tau$ E = K_2.K_9.E _{min} (Compression)	0.80 x 1.00 x 4600	3680 N/mm ²	
$E = K_2.K_9.E_{min}(Compression)$ E = K ₂ .E _{mean} (Deflection)	0.80 x 6800	5440 N/mm ²	
Compression Resistance			
$\lambda = Max(Lex/rx, Ley/ry)$	Max(195/4.330, 195/1.357)≤ 180	143.7	OK
$K_{12} = fn(\lambda, K_3, \sigma_0, E)$	143.72, 4.68, 3680	0.204	
$\sigma_{e,adm} = K_{12}.\sigma_{e,adm}$	0.204 x 4.68	0.96 N/mm ²	077
$\sigma_{c,a} = F/Area$	1.542 / 70.5≤ 0.96	0.22 N/mm ²	OK
Axial Load with Moments	Check		
Critical Design Location	X = 0.955	A BE \$11	OV
$\sigma_{mx,s} = Mx/Zx$	0.503 / 176.25≤ 5.31	2.85 N/mm ²	OK
σmx sdm=σmx.sdm (1-1.5 K12.σc.a/σc)	5.31 (1-1.5x0,204x0.22/1.76) 0.22/0.96+2.85/5.11	5.11 N/mm ³ 0.787	OK
Sologadm+Omx/Omx.adm			

Shear and Bearing Cricks Critical Design Location $\tau_a = 1.5 \text{ Fv} / \text{Area}$ $\sigma_{cax} = \text{Fvx} / (b.Bx)$	X = 0.000 1.5 x 1.035 / 70.5 \leq 0.81 1.035 / (47 x 75) \leq 1.64	0.22 N/mm² 0.29 N/mm²	OK OK
Deflection Check (Shear)	Deflection NOT Included)		

Critical Load Case 002 : Live Only (Serviceability)
 $\delta = \delta_m$ 2.78 mmOK

@ MasterFrame - Safari Zoo - Bear Walkway ... 32000\K32719 - Safari Zoo, Dalton (KL)\1-DESIGN ADMIN\1-CALCULATIONS\lateral brace frame 25256 : K32719 Job Ref 8414-**R G Parkins & Partners Ltd** Sheet :/ Meadowside 97 King Street Made by :SR Shap Road : 18 January 2016 / Ver. 2015.06 Lancaster Date : AR Kendal Checked LA1 1RH Approved : Tel: (01524) 32548 **MasterKey : Timber Design** Axial Load With Moment Design to BS 5268 : Part 2 Member 2 (N.1-N.3) @ Level 1 L Ψx ₩x ₩ņ Summary Design Data 1.0 L1 Design Cases Covered 1.0 L1 Deflection Cases Covered D = 150 Solid circular section in Strength Class C16 Section Size Area 176.7, Zx 331.3, Zy 331.3, rx 3.75, ry 3.75 Section Properties (cm²,cm³,cm) 3 : External uses fully exposed, Short Term loading Specification Use minimum modulus Critical Case 2 Integrated Design F = 17.763 kN, Lx = 0.76 m, Ly = 0.76 m, Lex = 1.0 Lx, Ley = 1.0 Ly Member Details Bearing length B 75, Distance to Bearing 150 mm Grade and Admissible Stresses (Strength Class C16) 8.10 N/mm² 0.80 x 1.50 x 1.18 x 1.08 x 1.00 x 5.30 $\sigma_{mx.adm} = K_2.K_3.K_6.K_{7x}.K_8.\sigma_m$ 8.10 N/mm² 0.80 x 1.50 x 1.18 x 1.08 x 1.00 x 5.30 $\sigma_{my.adm} = K_2.K_3.K_6.K_{7y}.K_8.\sigma_m$ 6.12 N/mm² 0.60 x 1.50 x 1.00 x 6.80 $\sigma_{c,sóm} = K_2 \cdot K_3 \cdot K_8 \cdot \sigma_c$ 1.74 N/mm² 0.60 x 1.50 x 1.14 x 1.00 x 1.70 $\sigma_{o.adm} = K_2.K_3.K_4.K_8.\sigma_c$ 0.90 N/mm² 0.90 x 1.50 x 1.00 x 0.67 $\tau_{adm} = K_2.K_3.K_8.\tau$ 4640 N/mm² 0.80 x 1.00 x 5800 $E = K_2 K_9 E_{min}$ **Compression Resistance** OK 20.3 Max(76/3.750, 76/3.750)≤ 180 $\lambda = Max(Lex/rx, Ley/ry)$ 0.901 20.27, 6.12, 4640 $K_{12} = fn(\lambda, K_3.\sigma_0, E)$ 5.52 N/mm² 0.901 x 6.12 $\sigma_{c.adm} = K_{12} \cdot \sigma_{c.adm}$ OK 1.01 N/mm² 17.763 / 176.7≤ 5.52 $\sigma_{c,a} = F/Area$ Axial Load with Moments Check X = 0.000 Critical Design Location 0.182 OK 1.01/5.52 $\sigma_0/\sigma_{0.sdm}$

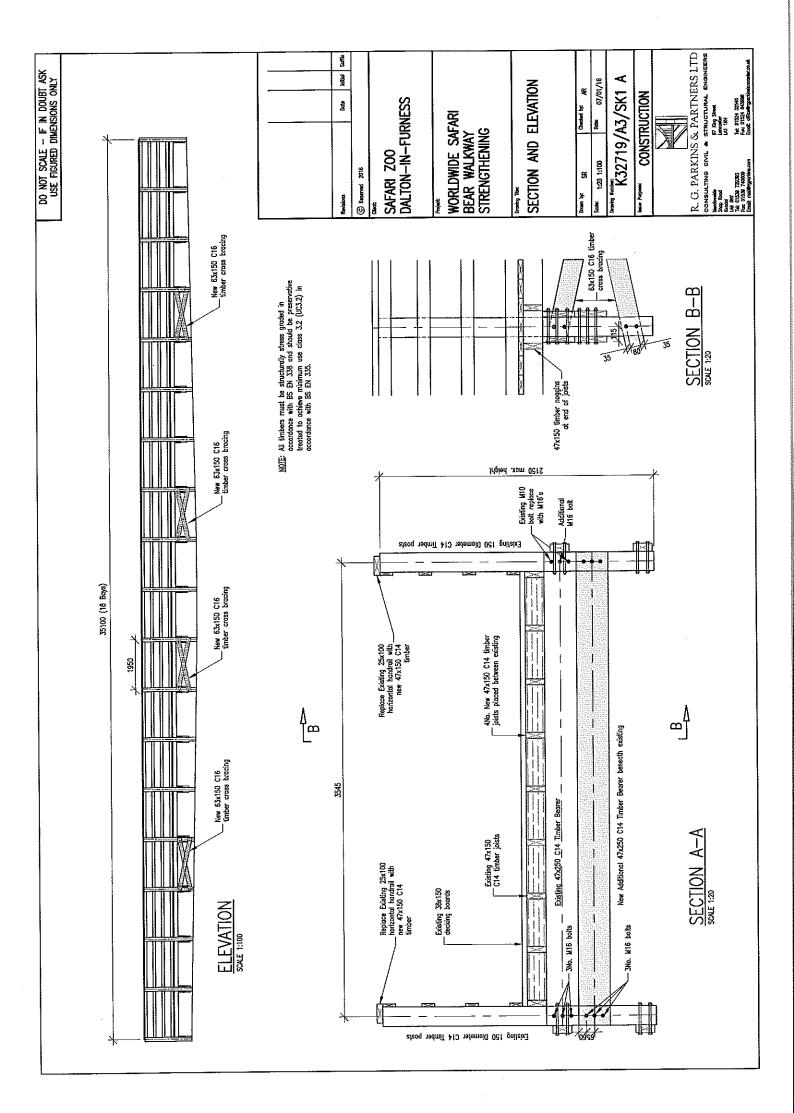
Software produced by www.MasterSeries.com C Civil and Structural Computer Services Limited.

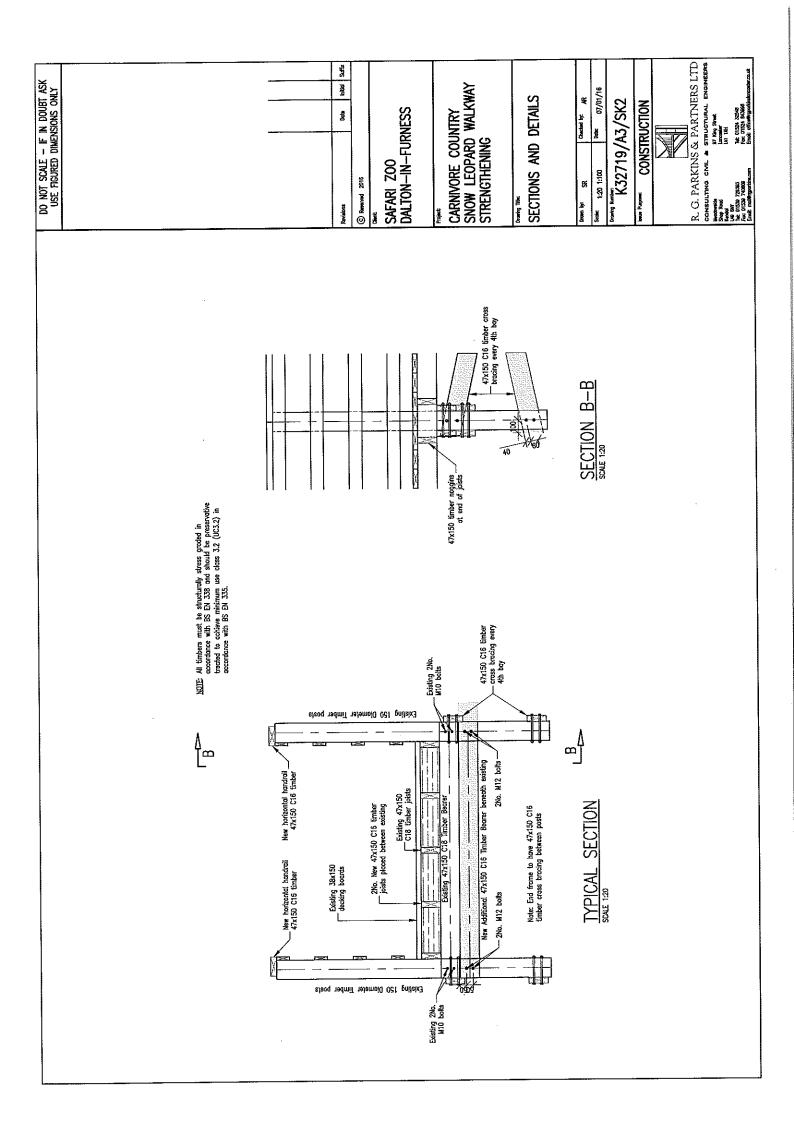

R G Parkins & Partner 97 King Street Meadowside Lancaster Shap Road LA1 1RH Kendal		Job Ref Sheet Made by	: K32719 : / : SR : 18 January 2016 / Ver. 201 : AR	BW (S
Tel: (01524) 32548	MasterKey : Timber D	esign	8 . Part 7	
Axial Lo	ad With Moment Design to Member 3 (N.2-N.4) @ I	Level 1	0 ; 1 al t 2	
	L W8			
→ F (kN) 、			F (kN)	<u> </u>
		aaaa ah		
	an a	1. 400 n milijans (- 3	, т
Summary Design Data				
Design Cases Covered	1.0 L1			
Deflection Cases Covered	1.0 L1 D = 150 Solid circular section in Streng	rth Class C16		
Section Size	D = 150 Solid circular section in Stellar Area 176.7, Zx 331.3, Zy 331.3, tx 3.7	5. ry 3.75		
Section Properties (cm ² ,cm ³ ,cm)	3 : External uses fully exposed, Short T	erm loading		
Specification	Use minimum modulus			
Integrated Design	Critical Case 2		· · · · · · · · · · · · · · · · · · ·	
Member Details	F = 20.456 kN, Lx = 0.76 m, Ly = 0.76 m	m, Lex = 1.0) Lx, Ley = 1.0 Ly	
	Bearing length B 75, Distance to Bearing	ng 150 mm		
Grade and Admissible Stre	esses (Strength Class C16)		0.4837/ 1	
$\sigma_{mx.adm} = K_2.K_3.K_6.K_{7x}.K_8.\sigma_m$	0.80 x 1.50 x 1.18 x 1.08 x 1.00 x 5.50		8.10 N/mm ² 8.10 N/mm ²	
$\sigma_{my.adm} = K_2.K_3.K_6.K_{7y}.K_8.\sigma_m$	0.80 x 1.50 x 1.18 x 1.08 x 1.00 x 5.30		6.12 N/mm ²	
$\sigma_{\alpha,adm} = K_2, K_3, K_8, \sigma_c$	0.60 x 1.50 x 1.00 x 6.80 0.60 x 1.50 x 1.14 x 1.00 x 1.70		1.74 N/mm ²	
$\sigma_{\text{e.ndm}} = K_2, K_3, K_4, K_8, \sigma_{\circ}$	0.90 x 1.50 x 1.14 x 1.00 x 1.70 0.90 x 1.50 x 1.00 x 0.67		0.90 N/mm ²	
$\tau_{adm} = K_2.K_3.K_8.\tau$	0.90 x 1.00 x 5800		4640 N/mm ²	
$\mathbf{E} = \mathbf{K}_2.\mathbf{K}_9.\mathbf{E}_{\min}$	0.00 X 1.00 X 5000			
Compression Resistance	Max(76/3.750, 76/3.750)≤ 180		20.3	OK
$\lambda = Max(Lex/rx, Ley/ry)$	20.27, 6.12, 4640		0.901	
$K_{12} = fi(\lambda, K_3, \sigma_c, E)$	0,901 x 6.12		5.52 N/mm ²	
$\sigma_{o,adm} = K_{12} \cdot \sigma_{o,adm}$ $\sigma_{o,a} = F/Area$	20.456 / 176.7≤ 5.52		1.16 N/mm ²	OK
Axial Load with Moments	Check			
Critical Design Location	X = 0.000		0.210	OK
σ∫σ _{a.edm}	1.16/5.52		0,210	UK

rs Ltd 25256	Job Ref : K32719 BLOK6 Sheet : /
	Made by : SR
1	Date : 18 January 2016 / Ver. 2015.06
	Checked : AR Approved :
MasterKey : Timber L oad With Moment Design t Member 4 (N.2-N.3) @ 1 	o BS 5268 : Part 2
	* * * h
in an	neerowa and the second se
	Class C16
Use minimum modulus	
Critical Case 2	
F = -1.655 kN, $Lx = 2.093$ m, $Ly = 2.093$	
esses (Strength Class C16) 0.80 x 1.50 x 1.08 x 1.00 x 5.30 0.80 x 1.50 x 1.17 x 1.00 x 5.30 0.80 x 1.50 x 1.00 x 1.08 x 3.20 0.60 x 1.50 x 1.14 x 1.00 x 1.70 0.90 x 1.50 x 1.00 x 0.67	6.86 N/mm² 7.44 N/mm² 4.14 N/mm² 1.74 N/mm² 0.90 N/mm²
0.80 x 1.00 x 5800	4640 N/mm ²
1.655/94.5≤ 4.14	0.18 N/mm ² OK
Check	
	0.040 077
0.18/4.14	0.042 OK
	de d MasterKey : Timber I coad With Moment Design t Member 4 (N.2-N.3) (2)

$K_{12}= \hat{m}(\lambda, K_3.\sigma_e, E)$ 115.09, 6.12, 4640 0.289 $\sigma_{e,sdm} = K_{12}.\sigma_{e,sdm}$ 0.289 x 6.12 1.77 N/mm² $\sigma_{e,s} = F/Area$ 5.763 / 92.6 \le 1.77 0.62 N/mm² OK Axial Load with Moments Check Critical Design Location X = 0.000 X = 0.000	← <mark>F (kN)</mark> ← (-) (+)	tial Load With Moment Design to H Member 5 (N.1-N.4) @ Le	3S 5268 : Part 2 vel 1 <u>(F (kN)</u> *	y y ==================================
Member 5 (N.1-N.4) @ Level 1Watch is a construction of the second cons	← <mark>F (kN)</mark> ← (-) (+)	Member 5 (N.1-N.4) @ Le ⊢ L	vel 1 $(F(kN)) \times x^{-1}$	⊻+ y s ↓
Summary Design Data Design Cases Covered 1.0 L1 Deflection Cases Covered 1.0 L1 Deflection Cases Covered 1.0 L1 Section Size $b = 63, h 147$ Regularized Section in Strength Class C16 Section Size $b = 63, h 147$ Regularized Section in Strength Class C16 Section Properties (cm ² , cm ² , cm ²) Area 92.6, $Zx 226.9, Zy 97.2, rx 4.24, ry 1, S2$ Specification $3: External uses fully exposed, Short Term leading Use minimum modulus Integrated Design Critical Case 2 Member Details P = 5.763 kK, Lx = 2.093 m, Lx = 2.093 m, Lx = 1.0 Lx, Ley = 1.0 LyBearing length B 75, Distance to Bearing 150 mmStrade and Admissible Stresses (Strength Class C16)\sigma_{maxtan} = K_{2x}K_{3x}K_{2x}K_{3x}\sigma_{3n} 0.80 x 1.50 x 1.08 x 1.00 x 5.30 6.88 N/mm2\sigma_{maxtan} = K_{2x}K_{3x}K_{2x}K_{3x}\sigma_{3n} 0.80 x 1.50 x 1.08 x 1.00 x 5.30 7.44 N/mm2\sigma_{maxtan} = K_{2x}K_{3x}K_{3x}K_{3x}\sigma_{3n} 0.80 x 1.50 x 1.08 x 1.00 x 5.30 6.12 N/mm2\sigma_{maxtan} = K_{2x}K_{3x}K_{3x}K_{3x}\sigma_{3n} 0.80 x 1.50 x 1.00 x 5.80 6.12 N/mm2\sigma_{maxtan} = K_{2x}K_{3x}K_{3x}K_{3x}\sigma_{3n} 0.80 x 1.50 x 1.00 x 5.80 6.12 N/mm2\sigma_{maxtan} = K_{2x}K_{3x}K_{3x}K_{3x}\sigma_{3n} 0.80 x 1.50 x 1.00 x 5.80 6.12 N/mm2\sigma_{maxtan} = K_{2x}K_{3x}K_{3x}K_{3x}\sigma_{3n} 0.80 x 1.50 x 1.00 x 0.67 0.90 N/mm2T_{max}(Lex/rx, Ley/ry) Max(209/4.244, 209/1.819) \le 180 115.1 0KK_{12} = fn(A, K_{3x}, \sigma_{4x}) 115.1 0KK_{12} = fn(A, K_{3x}, \sigma_{5x}) 115.09, 6.12, 4640 1.77 N/mm2\sigma_{maxtan} = F_{4x}K_{3x} \sigma_{4x} 0.289 x 6.12 (1.77 N/mm2)\sigma_{maxtan} = F_{4x}K_{3x} \sigma_{4x} 0.289 x 6.12 (1.77 N/mm2) 0.62 N/mm2 0KExist Load with Moments CheckCritical Design Location x = 0.000$	← (kN) ← (-) (+) ummary Design Da	۲۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰		y y n
Summary Design Data Design Cases Covered 1.0 L1 Deflection Cases Covered 1.0 L1 Section Size b = 63, h 147 Regularized Section in Strength Class C16 Section Properties (um ² , cm	← (kN) ← (-) (+) ummary Design Da			y s
Compression ResistanceCompression ResistanceA max(Lex/rx, Ley/ry)Max(209/4.244, 209/1.819) < 180115.0Compression ResistanceA max(Lex/rx, Ley/ry)Max(209/4.244, 209/1.819) < 180115.0Compression ResistanceA max(209/4.244, 209/1.819) < 180115.0Compression ResistanceA max(Lex/rx, Ley/ry)Max(209/4.244, 209/1.819) < 180115.0OutputCompression ResistanceA max(Lex/rx, Ley/ry)Max(209/4.244, 209/1.819) < 180115.1OKCompression ResistanceA max(Lex/rx, Ley/ry)Max(209/4.244, 209/1.819) < 180115.1OK	(-) (+)	wy		<u> </u>
Summary Design Data Design Cases Covered 1.0 L1 Deflection Cases Covered 1.0 L1 Section Size $b = 63$, h 147 Regularized Section in Strength Class C16 Section Properties (cm ² ,cm ² ,cm) Area 92.6, Zx 226.9, Zy 97.2, rx 4.24, ry 1.82 Specification $crossice = b = 63$, h 147 Regularized Section in Strength Class C16 Section Properties (cm ² ,cm ² ,cm) Area 92.6, Zx 226.9, Zy 97.2, rx 4.24, ry 1.82 Specification $crossice = b = 63$, h 147 Regularized Section in Strength Class C16 Section Properties (cm ² ,cm ² ,cm) Area 92.6, Zx 226.9, Zy 97.2, rx 4.24, ry 1.82 Specification $crossice = b = 63$, h 147 Regularized Section in Strength Class C16 Section Properties (cm ² ,cm ² ,cm) Area 92.6, Zx 226.9, Zy 97.2, rx 4.24, ry 1.82 Specification $crossice = b = 63$, h 147 Regularized Section in Strength Class C16 Section Properties (cm ² ,cm ² ,cm) Area 92.6, Zx 20.93 m, Ly = 2.093 m, Lex = 1.0 Lx, Ley = 1.0 Ly Bearing length B 75, Distance to Bearing 150 mm Grade and Admissible Stresses (Strength Class C16) Gravatin = K ₂ , K ₃ , K ₅ , K ₆ , S _{co} 0.60 x 1.50 x 1.04 x 1.00 x 5.30 6.88 N/mm ² Gradem = K ₂ , K ₃ , K ₈ , K ₆ , G ₀ 0.60 x 1.50 x 1.14 x 1.00 x 5.30 7.44 N/mm ² Gradem = K ₂ , K ₃ , K ₈ , K ₆ , G ₀ 0.60 x 1.50 x 1.14 x 1.00 x 1.70 1.74 N/mm ² Gradem = K ₂ , K ₃ , K ₆ , K ₆ , G ₀ 0.60 x 1.50 x 1.00 x 5.800 4640 N/mm ² Compression Resistance $\lambda = Max(Lex/rx, Ley/ry) Max(209/4.244, 209/1.819) \le 180$ 1.15.1 OK $K_{12} = h(c, K_{50}, K_{50}, K_{51} 0.150, 9.612, 4640 0.289 Gradem = K_{12}, Gradem 0.289 x 6.12 1.77 0.62 N/mm2 OK viail Load with Moments Check Critical Design Location X = 0.000$	(-) (+)	Wy	***(+) *	
Design Cases Covered1.0 L1Deflection Cases Covered1.0 L1Section Sizeb = 63, h 147 Regularized Section in Strength Class C16Section Sizeb = 63, h 147 Regularized Section in Strength Class C16Section Properties (cm²,cm²,cm²,cm)Area 92.6, Zx 226.9, Zy 97.2, rx 4.24, ry 1.82Specification3 : External uses fully exposed, Short Term loading Use minimum modulusIntegrated DesignCritical Case 2Member DetailsF = 5.763 kN, Lx = 2.093 m, Ly = 2.093 m, Lex = 1.0 Lx, Ley = 1.0 Ly Bearing length B 75, Distance to Bearing 150 mmGrade and Admissible Stresses (Strength Class C16) orwsadm = K2,K3,K7w,K8.cm0.80 x 1.50 x 1.08 x 1.00 x 5.30Grade and Admissible Stresses (Strength Class C16) orwsadm = K2,K3,K7w,K8.cm0.80 x 1.50 x 1.08 x 1.00 x 5.30Grade and Admissible Stresses (Strength Class C16) orwsadm = K2,K3,K7w,K8.cm0.80 x 1.50 x 1.08 x 1.00 x 5.30Grade and Admissible Stresses (Strength Class C16) orwsadm = K2,K3,K6.x6.cm0.80 x 1.50 x 1.00 x 5.30Grade m K2,K3,K6.x6.cm0.60 x 1.50 x 1.00 x 5.30Gradem = K2,K3,K6.x6.cm0.60 x 1.50 x 1.00 x 0.670.90 N/mm²0.90 x 1.50 x 1.00 x 0.670.90 N/mm²E = K2,K6,EminCompression Resistance115.0 x 6.12 $\lambda = Max(Lex/rx, Ley/ry)$ Max(209/4.244, 209/1.819) ≤ 180115.1OK $K_{12} = fn(\lambda, K_3.cm, E)$ 115.09, 6.12 $\lambda = Max(Lex/rx, Ley/ry)$ Max(209/4.244, 209/1.819) ≤ 180 $K_{12} = fn(\lambda, K_3.cm, E)$ 115.09, 6.12 $\lambda = Max(Lex/rx, Ley/ry)$ Max(209/4.244, 209/1.819) ≤ 180 κ	ummary Design Da	en na 1999 en en en en en en le fer het de fer die het de ferste de ferste de ferste de ferste de ferste de fe En en	erel 🗗 🛛 🕺	
Design Cases Covered1.0 L1Deflection Cases Covered1.0 L1Section Sizeb = 63, h 147 Regularized Section in Strength Class C16Section Sizeb = 63, h 147 Regularized Section in Strength Class C16Section Properties (cm²,cm²,cm²,cm)Area 92.6, Zx 226.9, Zy 97.2, rx 4.24, ry 1.82Specification3 : External uses fully exposed, Short Term loading Use minimum modulusIntegrated DesignCritical Case 2Member DetailsF = 5.763 kN, Lx = 2.093 m, Ly = 2.093 m, Lex = 1.0 Lx, Ley = 1.0 Ly Bearing length B 75, Distance to Bearing 150 mmGrade and Admissible Stresses (Strength Class C16) orwsadm = K2,K3,K7w,K8.cm0.80 x 1.50 x 1.08 x 1.00 x 5.30Grade and Admissible Stresses (Strength Class C16) orwsadm = K2,K3,K7w,K8.cm0.80 x 1.50 x 1.08 x 1.00 x 5.30Grade and Admissible Stresses (Strength Class C16) orwsadm = K2,K3,K7w,K8.cm0.80 x 1.50 x 1.08 x 1.00 x 5.30Grade and Admissible Stresses (Strength Class C16) orwsadm = K2,K3,K6.x6.cm0.80 x 1.50 x 1.00 x 5.30Grade m K2,K3,K6.x6.cm0.60 x 1.50 x 1.00 x 5.30Gradem = K2,K3,K6.x6.cm0.60 x 1.50 x 1.00 x 0.670.90 N/mm²0.90 x 1.50 x 1.00 x 0.670.90 N/mm²E = K2,K6,EminCompression Resistance115.0 x 6.12 $\lambda = Max(Lex/rx, Ley/ry)$ Max(209/4.244, 209/1.819) ≤ 180115.1OK $K_{12} = fn(\lambda, K_3.cm, E)$ 115.09, 6.12 $\lambda = Max(Lex/rx, Ley/ry)$ Max(209/4.244, 209/1.819) ≤ 180 $K_{12} = fn(\lambda, K_3.cm, E)$ 115.09, 6.12 $\lambda = Max(Lex/rx, Ley/ry)$ Max(209/4.244, 209/1.819) ≤ 180 κ	ummary Design Da			v t
Design Cases Covered1.0 L1Deflection Cases Covered1.0 L1Section Sizeb = 63, h 147 Regularized Section in Strength Class C16Section Sizeb = 63, h 147 Regularized Section in Strength Class C16Section Properties (cm²,cm²,cm²,cm)Area 92.6, Zx 226.9, Zy 97.2, rx 4.24, ry 1.82Specification3 : External uses fully exposed, Short Term loading Use minimum modulusIntegrated DesignCritical Case 2Member DetailsF = 5.763 kN, Lx = 2.093 m, Ly = 2.093 m, Lex = 1.0 Lx, Ley = 1.0 Ly Bearing length B 75, Distance to Bearing 150 mmGrade and Admissible Stresses (Strength Class C16) orwsadm = K2,K3,K7w,K8.cm0.80 x 1.50 x 1.08 x 1.00 x 5.30Grade and Admissible Stresses (Strength Class C16) orwsadm = K2,K3,K7w,K8.cm0.80 x 1.50 x 1.08 x 1.00 x 5.30Grade and Admissible Stresses (Strength Class C16) orwsadm = K2,K3,K7w,K8.cm0.80 x 1.50 x 1.08 x 1.00 x 5.30Grade and Admissible Stresses (Strength Class C16) orwsadm = K2,K3,K6.x6.cm0.80 x 1.50 x 1.00 x 5.30Grade m K2,K3,K6.x6.cm0.60 x 1.50 x 1.00 x 5.30Gradem = K2,K3,K6.x6.cm0.60 x 1.50 x 1.00 x 0.670.90 N/mm²0.90 x 1.50 x 1.00 x 0.670.90 N/mm²E = K2,K6,EminCompression Resistance115.0 x 6.12 $\lambda = Max(Lex/rx, Ley/ry)$ Max(209/4.244, 209/1.819) ≤ 180115.1OK $K_{12} = fn(\lambda, K_3.cm, E)$ 115.09, 6.12 $\lambda = Max(Lex/rx, Ley/ry)$ Max(209/4.244, 209/1.819) ≤ 180 $K_{12} = fn(\lambda, K_3.cm, E)$ 115.09, 6.12 $\lambda = Max(Lex/rx, Ley/ry)$ Max(209/4.244, 209/1.819) ≤ 180 κ	ummary Design Da			
Design Cases Covered 1.0 L1 Deflection Cases Covered 1.0 L1 Section Size b = 63, h 147 Regularized Section in Strength Class C16 Section Properties (cm ² , cm ³ , cm ³ , cm ³) Specification 3 : External uses fully exposed, Short Term loading Use minimum modulus Integrated Design Critical Case 2 Member Details P = 5.763 kN, Lx = 2.093 m, Ly = 2.093 m, Lex = 1.0 Lx, Ley = 1.0 Ly Bearing length B 75, Distance to Bearing 150 mm Grade and Admissible Stresses (Strength Class C16) $\sigma_{mx,sdm} = K_2.K_3.K_{7x}.K_8.\sigma_m$ 0.80 x 1.50 x 1.00 x 5.30 6.88 N/mm ² $\sigma_{my,sdm} = K_2.K_3.K_{7x}.K_8.\sigma_m$ 0.80 x 1.50 x 1.00 x 5.30 6.88 N/mm ² $\sigma_{mx,sdm} = K_2.K_3.K_{7x}.K_8.\sigma_m$ 0.80 x 1.50 x 1.17 x 1.00 x 5.30 7.44 N/mm ² $\sigma_{cadm} = K_2.K_3.K_8.c_6$ 0.60 x 1.50 x 1.10 x 1.00 x 0.67 0.90 N/mm ² $\tau_{adam} = K_2.K_3.K_8.c_6$ 0.60 x 1.50 x 1.00 x 0.67 0.90 N/mm ² $T_{adam} = K_2.K_3.K_9.C_{6min}$ 0.80 x 1.00 x 5800 4640 N/mm ² Compression Resistance $\lambda = Max(Lex/rx, Ley/ry)$ Max(209/4.244, 209/1.819)≤ 180 115.1 OK $r_{adam} = K_2.K_9.C_{6min}$ 0.289 x 6.12 1.77 N/mm ² 0.62 N/mm ² 0.65 N/mm ² 0.6		ta		
Section Size b = 63, h 147 Regularized Section in Strength Class C16 Section Properties (cm ² , cm ² , cm) Area 92, 6, Zx 226, 9, Zy 97, 2, rx 4, 24, ry 1, 82 Specification 3 : External uses fully exposed, Short Term loading Use minimum modulus Integrated Design Critical Case 2 Member Details $P = 5.763$ kN, $Lx = 2.093$ m, $Ly = 2.093$ m, $Lex = 1.0$ Lx, $Ley = 1.0$ Ly Bearing length B 75, Distance to Bearing 150 mm Grade and Admissible Stresses (Strength Class C16) Gravadm = K_2, K_3, K_{75}, K_{85}, cm 0, 80 x 1.50 x 1.08 x 1.00 x 5.30 6.88 N/mm ² Gradem = K_2, K_3, K_{75}, K_{95}, cm 0, 80 x 1.50 x 1.00 x 5.30 6.12 N/mm ² Gradem = K_2, K_3, K_{55}, cm 0, 60 x 1.50 x 1.00 x 5.30 6.12 N/mm ² Gradem = K_2, K_3, K_{55}, cm 0, 60 x 1.50 x 1.00 x 5.80 6.12 N/mm ² Gradem = K_2, K_3, K_{55}, cm 0, 60 x 1.50 x 1.00 x 5.80 6.12 N/mm ² Gradem = K_2, K_3, K_{55}, cm 0, 80 x 1.00 x 5.80 6.12 N/mm ² Gradem = K_2, K_3, K_{55}, cm 0, 80 x 1.00 x 5.80 6.12 N/mm ² Gradem = K_2, K_3, K_{55}, cm 0, 80 x 1.00 x 5.80 6.12 N/mm ² Gradem = K_2, K_3, K_{55}, cm 0, 80 x 1.00 x 5.80 6.12 N/mm ² Gradem = K_2, K_3, K_{55}, cm 0, 80 x 1.00 x 5.80 6.12 N/mm ² Gradem = K_2, K_3, K_{55}, cm 0, 80 x 1.00 x 5.80 4640 N/mm ² Compression Resistance $\lambda = Max(Lex/rx, Ley/ry) Max(209/4, 244, 209/1.819) \le 180$ 115.1 Ork $K_{12} = fn(\lambda, K_3, G_{56}, E)$ 115.09, 6.12, 4640 0, 289 Gradem = K_{12}, Gradem 0, 289 x 6.12 1.77 N/mm ² Gradem = K_{12}, Gradem 0, 289 x 6.12 1.77 N/mm ² Gradem = K_{12}, Gradem 0, 289 x 6.12 0.77 0, 62 N/mm ² OK xial Load with Moments Check Critical Design Location X = 0.000	Design Cases Covered			
Section Properties (om ³ , cm ³ , cm) Area 92,6, Zx 226.9, Zy 97.2, rx 4.24, ry 1.82 Specification 3 : External uses fully exposed, Short Term loading Use minimum modulus Use minimum modulus Integrated Design Critical Case 2 Member Details $F = 5.763$ kN, Lx = 2.093 m, Ly = 2.093 m, Lex = 1.0 Lx, Ley = 1.0 Ly Bearing length B 75, Distance to Bearing 150 mm Grade and Admissible Stresses (Strength Class C16) $\sigma_{ox,xdm} = K_2.K_3.K_{37}.K_8.\sigma_m$ 0.80 x 1.50 x 1.08 x 1.00 x 5.30 $\sigma_{ox,dm} = K_2.K_3.K_{57}.K_8.\sigma_m$ 0.80 x 1.50 x 1.07 x 1.00 x 5.30 $\sigma_{ox,dm} = K_2.K_3.K_{57}.K_8.\sigma_m$ 0.80 x 1.50 x 1.17 x 1.00 x 5.30 $\sigma_{ox,dm} = K_2.K_3.K_{5.7}.K_8.\sigma_m$ 0.80 x 1.50 x 1.17 x 1.00 x 5.30 $\sigma_{ox,dm} = K_2.K_3.K_{5.7}.K_{5.7} \sigma_0$ 0.60 x 1.50 x 1.00 x 5.80 $\sigma_{ox,dm} = K_2.K_3.K_{5.7}.K_{5.7} \sigma_0$ 0.60 x 1.50 x 1.00 x 5.80 $\sigma_{ox,dm} = K_2.K_3.K_{6.7}$ 0.90 x 1.50 x 1.00 x 0.67 $\sigma_{ox,dm} = K_2.K_0.F_{min}$ 0.80 x 1.00 x 5800 $\sigma_{cx,dm} = K_{12.07,ox,dm}$ 0.80 x 1.00 x 5800 $\sigma_{cx,dm} = K_{12.07,ox,dm}$ 0.289 x 6.12 $T_{tag} = fl/A, K_3.\sigma_c, B$ 115.0, 0.12, 4640 $\sigma_{cx,dm} = K_{12.07,ox,dm}$ 0.289 x 6.12 <t< td=""><td>Deflection Cases Covered</td><td>1.0 L1</td><td></td><td></td></t<>	Deflection Cases Covered	1.0 L1		
Specification3 : External uses fully exposed, Short Term loading Use minimum modulusIntegrated DesignCritical Case 2Member Details $F = 5.763 \text{ kN}, Lx = 2.093 \text{ m}, Ly = 2.093 \text{ m}, Lex = 1.0 \text{ Lx}, Ley = 1.0 \text{ Ly}$ Bearing length B 75, Distance to Bearing 150 mmGrade and Admissible Stresses (Strength Class C16) $\sigma_{mx,adm} = K_2.K_3.K_{7x}.K_{8}.\sigma_m$ $\sigma_{ny,adm} = K_2.K_3.K_{7x}.K_{8}.\sigma_m$ $0.80 \times 1.50 \times 1.08 \times 1.00 \times 5.30$ $\sigma_{ny,adm} = K_2.K_3.K_{7x}.K_{8}.\sigma_m$ $0.80 \times 1.50 \times 1.07 \times 1.00 \times 5.30$ $\sigma_{num} = K_2.K_3.K_{7x}.K_{8.\sigma_m}$ $0.60 \times 1.50 \times 1.17 \times 1.00 \times 5.30$ $\sigma_{num} = K_2.K_3.K_{7x}.K_{8.\sigma_m}$ $0.60 \times 1.50 \times 1.00 \times 6.80$ $\sigma_{num} = K_2.K_3.K_{7x}.K_{8.\sigma_m}$ $0.60 \times 1.50 \times 1.00 \times 5.30$ $\sigma_{num} = K_2.K_3.K_{7x}.K_{8.\sigma_m}$ $0.60 \times 1.50 \times 1.00 \times 5.30$ $\sigma_{num} = K_2.K_3.K_{7x}.K_{8.\sigma_m}$ $0.60 \times 1.50 \times 1.00 \times 5.30$ $\sigma_{num} = K_2.K_3.K_{7x}.K_{8.\sigma_m}$ $0.60 \times 1.50 \times 1.00 \times 0.67$ 0.90 N/mm^2 $r_{adm} = K_2.K_3.E_{min}$ $0.80 \times 1.00 \times 5800$ 4640 N/mm^2 $Compression Resistance$ $\lambda_{12} = fn(\lambda, K_{3.\sigma_m}, E)$ $115.09, 6.12, 4640$ $\sigma_{cs} = F/Area$ 0.289×6.12 1.77 N/mm^2 $\sigma_{cs} = F/Area$ $5.763 / 92.6 \le 1.77$ 0.62 N/mm^2 OK critical Design Location		b = 63, h 147 Regularized Section in Streng	th Class C16	
Use minimum modulus Integrated Design Critical Case 2 Member Details $F = 5.763 \text{ kN}, \text{Lx} = 2.093 \text{ m}, \text{Lex} = 1.0 \text{ Lx}, \text{Ley} = 1.0 \text{ Ly}$ Bearing length B 75, Distance to Bearing 150 mm Grade and Admissible Stresses (Strength Class C16) $\sigma_{mx,sdm} = K_2.K_3.K_{7v}.K_{8.}\sigma_m$ $\sigma_{my,sdm} = K_2.K_3.K_{7v}.K_{8.}\sigma_m$ $0.80 \times 1.50 \times 1.08 \times 1.00 \times 5.30$ $\sigma_{my,sdm} = K_2.K_3.K_{7v}.K_{8.}\sigma_m$ $0.80 \times 1.50 \times 1.17 \times 1.00 \times 5.30$ $\sigma_{mx,sdm} = K_2.K_3.K_{7v}.K_{8.}\sigma_m$ $0.80 \times 1.50 \times 1.17 \times 1.00 \times 5.30$ $\sigma_{a,dm} = K_2.K_3.K_{8.}K_{8.}\sigma_0$ $0.60 \times 1.50 \times 1.100 \times 6.80$ $\sigma_{a,dm} = K_2.K_3.K_{8.}K_{8.}\sigma_0$ $0.60 \times 1.50 \times 1.100 \times 1.70$ $\sigma_{a,dm} = K_2.K_3.K_{8.}K_{8.}\sigma_0$ $0.80 \times 1.50 \times 1.00 \times 0.67$ $\sigma_{a,dm} = K_2.K_3.K_{8.}\pi$ $0.90 \times 1.50 \times 1.00 \times 0.67$ $r_{a,dm} = K_2.K_3.K_{8.}\sigma_0$ $0.80 \times 1.00 \times 5800$ $to = K_{12}.K_{9.}E_{min}$ $0.80 \times 1.00 \times 5800$ $\lambda = Max(Lex/rx, Ley/ry)$ $Max(209/4.244, 209/1.819) \le 180$ 115.1 $K_{12} = fn(\lambda, K_{3.}\sigma_{0.}, E)$ $115.09, 6.12, 4640$ 0.289 $\sigma_{c,ad} = K_{12}.\sigma_{c,adm}$ 0.289×6.12 1.77 N/mm^2 $\sigma_{c,ad} = F/Area$ $5.763 / 92.6 \le 1.77$ 0.62 N/mm^2 $0K$				
Integrated Design Critical Case 2 Member Details $F = 5.763 \text{ kN}, Lx = 2.093 \text{ m}, Ly = 2.093 \text{ m}, Lex = 1.0 \text{ Lx}, Ley = 1.0 \text{ Ly}$ Bearing length B 75, Distance to Bearing 150 mm Grade and Admissible Stresses (Strength Class C16) $0.80 \times 1.50 \times 1.08 \times 1.00 \times 5.30$ 6.88 N/mm^2 Grade and Admissible Stresses (Strength Class C16) $0.80 \times 1.50 \times 1.08 \times 1.00 \times 5.30$ 6.88 N/mm^2 Grade and Admissible Stresses (Strength Class C16) $0.80 \times 1.50 \times 1.17 \times 1.00 \times 5.30$ 6.12 N/mm^2 Grade m K_2, K_3, K_5, C_6 $0.60 \times 1.50 \times 1.01 \times 1.00 \times 5.30$ 7.44 N/mm^2 Gadam = K_2, K_3, K_5, C_6 $0.60 \times 1.50 \times 1.00 \times 6.80$ 6.12 N/mm^2 $\sigma_{cadm} = K_2, K_3, K_5, C_6$ $0.60 \times 1.50 \times 1.00 \times 6.70$ 0.90 N/mm^2 Team= K_2, K_3, K_6, T_6 $0.90 \times 1.50 \times 1.00 \times 0.67$ 0.90 N/mm^2 E = K_2, K_9, E_min $0.80 \times 1.00 \times 5800$ 115.1 OK K_{12} = fn(\lambda, K_3, G_6, E) $115.09, 6.12, 4640$ 0.289 G Geader = K_{12} G_{cadm} 0.289×6.12 1.77 N/mm^2 0.62 N/mm^2 0.62 N/mm^2 Kial Load with Moments Check Critical Design Location $X = 0.000$ $X = 0.000$	specification		loading	
Member Details $F = 5.763 \text{ kN}, \text{Lx} = 2.093 \text{ m}, \text{Ly} = 2.093 \text{ m}, \text{Lex} = 1.0 \text{ Lx}, \text{Ley} = 1.0 \text{ Ly}$ Bearing length B 75, Distance to Bearing 150 mm Grade and Admissible Stresses (Strength Class C16) $0.80 \times 1.50 \times 1.08 \times 1.00 \times 5.30$ 6.88 N/mm^2 $\sigma_{my,adm} = K_2, K_3, K_{7x}, K_8, \sigma_m$ $0.80 \times 1.50 \times 1.01 \times 1.00 \times 5.30$ 7.44 N/mm^2 $\sigma_{my,adm} = K_2, K_3, K_{7x}, K_8, \sigma_m$ $0.80 \times 1.50 \times 1.01 \times 1.00 \times 5.30$ 7.44 N/mm^2 $\sigma_{u,adm} = K_2, K_3, K_8, \sigma_0$ $0.60 \times 1.50 \times 1.00 \times 5.30$ 7.44 N/mm^2 $\sigma_{u,adm} = K_2, K_3, K_8, \sigma_0$ $0.60 \times 1.50 \times 1.17 \times 1.00 \times 5.30$ 7.44 N/mm^2 $\sigma_{u,adm} = K_2, K_3, K_8, \sigma_0$ $0.60 \times 1.50 \times 1.00 \times 6.80$ 6.12 N/mm^2 $\sigma_{u,adm} = K_2, K_3, K_8, K_8, \sigma_0$ $0.60 \times 1.50 \times 1.14 \times 1.00 \times 1.70$ 1.74 N/mm^2 $\sigma_{u,adm} = K_2, K_3, K_8, \kappa_1$ $0.90 \times 1.50 \times 1.00 \times 0.67$ 0.90 N/mm^2 $E = K_2, K_9, E_{min}$ $0.80 \times 1.00 \times 5800$ 4640 N/mm^2 $K_{12} = fn(\lambda, K_3.\sigma_0, E)$ $115.09, 6.12, 4640$ 0.289 $\sigma_{u,adm} = K_{12}, \sigma_{u,adm}$ 0.289×6.12 1.77 N/mm^2 $\sigma_{u,adm} = K_{12}, \sigma_{u,adm}$ $\sigma_{u,adm} = K_{12}, \sigma_{u,adm}$ 0.289×6.12 0.62 N/mm^2 0.62 N/mm^2 $0.62 N/$				
Bearing length B 75, Distance to Bearing 150 mm Grade and Admissible Stresses (Strength Class C16) $\sigma_{mx,sdm} = K_2, K_3, K_{7x}, K_8, \sigma_m$ $0.80 \times 1.50 \times 1.08 \times 1.00 \times 5.30$ 6.88 N/mm^2 $\sigma_{my,sdm} = K_2, K_3, K_{7x}, K_8, \sigma_m$ $0.80 \times 1.50 \times 1.17 \times 1.00 \times 5.30$ 7.44 N/mm^2 $\sigma_{o,adm} = K_2, K_3, K_8, \sigma_0$ $0.60 \times 1.50 \times 1.00 \times 6.80$ 6.12 N/mm^2 $\sigma_{o,adm} = K_2, K_3, K_4, K_8, \sigma_0$ $0.60 \times 1.50 \times 1.00 \times 0.67$ 0.90 N/mm^2 $\sigma_{a,adm} = K_2, K_3, K_4, K_8, \sigma_0$ $0.80 \times 1.00 \times 5800$ 4640 N/mm^2 $\sigma_{a,adm} = K_2, K_3, K_4, K_8, \sigma_0$ $0.80 \times 1.00 \times 5800$ 4640 N/mm^2 $\sigma_{a,adm} = K_2, K_3, K_4, K_8, \sigma_0$ $0.80 \times 1.00 \times 5800$ 4640 N/mm^2 $T_{adm} = K_2, K_3, E_{a,a}$ $0.80 \times 1.00 \times 5800$ 4640 N/mm^2 $K_{12} = fn(\lambda, K_3, \sigma_0, E)$ $115.09, 6.12, 4640$ 0.289 $\sigma_{a,ad} = K_{12}, \sigma_{a,adm}$ 0.289×6.12 1.77 N/mm^2 $\sigma_{a,a} = F/Area$ $5.763 / 92.6 \le 1.77$ 0.62 N/mm^2 OK				
Grade and Admissible Stresses (Strength Class C16) $\sigma_{mx,xdm} = K_2, K_3, K_{7x}, K_8, \sigma_m$ 0.80 x 1.50 x 1.08 x 1.00 x 5.30 6.88 N/mm ² $\sigma_{my,xdm} = K_2, K_3, K_{7x}, K_8, \sigma_m$ 0.80 x 1.50 x 1.17 x 1.00 x 5.30 7.44 N/mm ² $\sigma_{mx,adm} = K_2, K_3, K_{7x}, K_8, \sigma_m$ 0.60 x 1.50 x 1.00 x 6.80 6.12 N/mm ² $\sigma_{n,adm} = K_2, K_3, K_8, \sigma_o$ 0.60 x 1.50 x 1.00 x 0.60 6.12 N/mm ² $\sigma_{n,adm} = K_2, K_3, K_8, \sigma_o$ 0.60 x 1.50 x 1.00 x 0.67 0.90 N/mm ² $\sigma_{a,adm} = K_2, K_3, K_8, \tau$ 0.90 x 1.50 x 1.00 x 0.67 0.90 N/mm ² $E = K_2, K_9, E_{min}$ 0.80 x 1.00 x 5800 4640 N/mm ² Compression Resistance 115.1 0K $\chi_1 = m(\lambda, K_3, \sigma_e, E)$ 115.09, 6.12, 4640 0.289 $\sigma_{e,adm} = K_{12}, \sigma_{e,adm}$ 0.289 x 6.12 1.77 N/mm ² $\sigma_{e,ad} = F/Area$ 5.763 / 92.6 ≤ 1.77 0.62 N/mm ² 0K X = 0.000 X = 0.000 X = 0.000	Aember Details	F = 5.763 kN, Lx = 2.093 m, Ly = 2.093 m,	Lex = 1.0 Lx, Ley = 1.0 Ly	
Compression Resistance $\lambda = Max(Lex/rx, Lcy/ry)$ $Max(209/4,244,209/1.819) \le 180$ $\lambda = Max(Lex/rx, Lcy/ry)$ $Max(209/4,244,209/1.819) \le 180$ $K_{12}= \hat{m}(\lambda, K_3.\sigma_o, E)$ 115.09, 6.12,4640 $\sigma_{c,sdm} = K_{12}.\sigma_{c,sdm}$ 0.289 x 6.12 $\sigma_{c,s} = F/Area$ 5.763 / 92.6 \le 1.77 $\Delta = Max(Load with Moments Check)$ 0.000	F _{my.adm} = K ₂ .K ₃ .K ₇ .K ₈ .σ _m _{50.adm} = K ₂ .K ₃ .K ₈ .σ ₀ _{6adm} = K ₂ .K ₃ .K ₄ .K ₈ .σ ₀ _{adm} = K ₂ .K ₃ .K ₈ .τ	0.80 x 1.50 x 1.17 x 1.00 x 5.30 0.60 x 1.50 x 1.00 x 6.80 0.60 x 1.50 x 1.14 x 1.00 x 1.70 0.90 x 1.50 x 1.00 x 0.67	7.44 N/mm² 6.12 N/mm² 1.74 N/mm² 0.90 N/mm²	
$ \lambda = Max(Lex/rx, Lcy/ry) Max(209/4,244, 209/1.819)≤ 180 Max(309/4,244, 209/1.819)≤ 180 0.289 0.62 N/mm2 OK$	$= K_2.K_9.E_{min}$	0.80 x 1.00 x 5800	4640 N/mm ²	
K12= $\hat{\mathbf{n}}(\lambda, K_3.\sigma_{e}, E)$ 115.09, 6.12, 4640 0.289 $\sigma_{c,sdm} = K_{12}.\sigma_{c,sdm}$ 0.289 x 6.12 1.77 N/mm² $\sigma_{c,s} = F/Area$ 5.763 / 92.6 \le 1.77 0.62 N/mm² 0K xial Load with Moments Check Critical Design Location X = 0.000 X = 0.000				
$\sigma_{c,sdm} = K_{12}.\sigma_{c,sdm}$ 0.289 x 6.12 1.77 N/mm² $\sigma_{c,s} = F/Area$ 5.763 / 92.6≤ 1.77 0.62 N/mm² 0K xial Load with Moments Check Critical Design Location X = 0.000				OK
$\sigma_{c,s} = F/Area$ 5.763 / 92.6 \leq 1.77 0.62 N/mm ² OK Exial Load with Moments Check Critical Design Location $X = 0.000$				
xial Load with Moments Check Critical Design Location X = 0.000				OV
Critical Design Location $X = 0.000$	6,8 I <i>II</i> IVA	5,105174.021.11	0.02 19/11/11-	UK
	tial Load with Mon	ients Check		
	-			
σ ₀ /σ _{0.adm} 0.62/1.77 0.352 OK	σ/σ _{0.adm}	0.62/1.77	0.352	OK
σ ₀ /σ _{0.adm} 0.62/1.77 0.352 0	ritical Design Location		0.352	C

Software produced by www.MasterSeries.com @ Civil and Structural Computer Services Limited.


R. G. PARKINS & PARTNERS LTD CALCULATION BWIS JOB no K32719 PAGE KENDAL Meadowside 108 Sararen 200 DRG no DATE Shap Road 21' LAC DALTON - IN- FURLESS 97 King Street REVIS INITIAL 52 TITLE BEAR WALKWAY CHECKED CHECK, LONDINGS, BEACING BANTS. Fr = 5.763ka. MEMBER SIZE 63x 147 C16 TIMBLE Fuder = Fx Kas x Kan channe 6.6.6 TRY 2 Nº MIG · F = 4.24 TARLE 70 SHOLT TERM THROLLON '60M K56 \$ 0.70 Secure Gass 3 K57 = 1.00 M16 _ Edw = 4.24×0.7×1 = 2.96% : 2Nº MI6 = 2.968,2 = 5.936 KN > 5 763 KD : OK! + 115mm + (7dmin) + (1.5d min) = 35 (4d min) = 35 (15d min) = 35 Ġ 150 \odot PEOVIDE 2 Nº MIG LOUTS.



	STRUCTURAL ENGINEER			<u> </u>	JOB no	K32719	PAGE	8620
KENDAL	Meadowside Shap Road	-	12, 200		DRG no		DATE	Jan' 18
	97 King Street	DALTO	wins. Fuller	25	REVIS		INITIAL	Sl
			WALLEVAY		CHECKE	D		
	ىرىسىيىلى رويىتى تەكەر بىرىيى بىلىكى ئېرىم يېلىر ۋا يىلار ئېرىم بىرىيى يېلىر ئۇ يىلار ئېرىم بىرىيى يېرىكى	I DEHL	COALLE UN 7	<u> </u>				ļ
Hewodan C	S.R.							
9-11- 1 11-1 6 A (Standarson and and a standarson and a standarson and a standarson and a standarson and a stan								
DEFLECTION	<u>}</u>							
96-26	$= \frac{5}{381} \times \frac{0.4}{460}$	50 × 1950 4	× 12 1473×0.8	bag An	4.61	424		
5-2	= 5 × 0.7 324 × 460	74 × 1950 ⁴ xx × 47 ×	× 12 150 ³ × 0.8	jjan Lau	2.26	Ala		
dress	= / 4.62.	+ 2-863		-	5.4.	÷		
Limiting	Deflection	= 1950x	0 663	, și	5.85	fron	1.01	e
Reru	LE EXIST	ss the 1	rhousey	AN	, let	LACE L) (Triping	
47 x	150 C14	TINASER.	3					

APPENDIX D

DRAWINGS RG PARKINS & PARTNERS LTD REMEDIAL WORKS

APPENDIX No. B

From:	on behalf of David Gill
To:	Richard Garnett
Cc:	
Subject:	Re: FW: Zoo Direction Orders
Date:	19 January 2016 18:20:36

Dear Mr Garnett

This issue was fully delegated to Karen Brewer on receipt of the Direction Order. I have been out of the UK for long periods since that time and am not back in the UK until 24th January.

As I am still the licence holder at this time I am aware of your e mails addressed to me.

However I have not seen a report or instructed any action based on a report .

I can tell you that before any report was received I had already made a long term business decision to remove all the walkways except 2..

This decision was based on the assumption of the inevitable aging of all of the walkways and the potential need for constant maintence and eventual replacement of individual wood elements as need arose.

The economic argument based on the fact we have no funds available to re build the walkways in steel in the short or long term led me to a purely long term financial decision that required a removal of ALL walkways and platforms with immediate effect from your direction Order..

However as we had just opened one walkway in July and the wolf one was essential for viewing I decided to take a proactive approach and have these fully appraised and take whatever remedial action is needed to retain them for the long term.

All the walkways and platforms except the two mentioned above. have been closed for a while now and most are already demolished.

I hope you will work with Karen and the team to ensure the two walkways the zoo intends to use for public are passed as appropriate and reopened when the work suggested is complete.

yiurs sincerely

David S Gill

Dear Mr Gill

As you are aware the Direction Order dated 18th December 2015 in respect of the timber walkways at the Safari Zoo is now effective. This means that from today (19th January 2016) all the timber walkways must be closed until such

time as the Council is in receipt of the required report AND the Direction Order is revoked by the Council. I will inspect the Zoo at 10am on 20th January to ensure that this has been achieved.

I must inform you that the report must cover all the timber walkways as they existed when the Condition was attached to your licence dated 11th September 2015.

To avoid further action the full report must be received by 16th February 2016.

Once in receipt of the report I am very happy to meet with you to discuss an appropriate schedule for repair or replacement prior to consideration by Licensing Regulatory Committee. Please be aware that if any walkways are deemed to be dangerous the Council may take action under the Health and Safety at Work etc. Act 1974 to ensure that they remain closed until the necessary works are completed.

Richard Garnett

Principal Environmental Health Officer

www.barrowbc.gov.uk

Please think of the environment.

Don't print this email unless you really need